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According to the “stop-and-go” hypothesis of slow axonal transport, cytoskeletal and cytosolic proteins are transported
along axons at fast rates but the average velocity is slow because the movements are infrequent and bidirectional. To test
whether this hypothesis can explain the kinetics of slow axonal transport in vivo, we have developed a stochastic model
of neurofilament transport in axons. We propose that neurofilaments move in both anterograde and retrograde directions
along cytoskeletal tracks, alternating between short bouts of rapid movement and short “on-track” pauses, and that they
can also temporarily disengage from these tracks, resulting in more prolonged “off-track” pauses. We derive the kinetic
parameters of the model from a detailed analysis of the moving and pausing behavior of single neurofilaments in axons
of cultured neurons. We show that the model can match the shape, velocity, and spreading of the neurofilament transport
waves obtained by radioisotopic pulse labeling in vivo. The model predicts that axonal neurofilaments spend ~8% of

their time on track and ~97% of their time pausing during their journey along the axon.

INTRODUCTION

Neurofilaments are transported along axons toward the
axon tip in the slowest component of axonal transport at
average rates of ~0.004-0.04 um/s, several orders of mag-
nitude slower than the rate of fast axonal transport (Lasek ef
al., 1992; Nixon, 1998). Numerous studies on neurofilament
transport using radioisotopic pulse labeling spanning al-
most three decades have demonstrated that the pulse of
radiolabeled neurofilament proteins moves out along axons
in the form of a bell-shaped wave that spreads as it moves
distally. These waves have become universally familiar in
the field of axonal transport but little is known about how
they are generated and what mechanistic significance can be
ascribed to their shape.

One early model of slow axonal transport considered that
neurofilaments move unidirectionally in a slow and contin-
uous manner (Lasek ef al., 1984). In a mathematical descrip-
tion of this model, Blum and Reed (1989) proposed the
existence of a hypothetical “engine” that moves at a constant
slow velocity of 1 mm/d. Microtubules were considered to
interact directly with the engine and neurofilaments were
considered to move by piggy-backing on the moving micro-
tubules. According to this model, the average velocity of
neurofilament movement was dependent on the equilibrium
constants of the interactions between neurofilaments and
microtubules and between microtubules and the engine. On
the basis of these assumptions, the authors derived a system
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of partial differential equations to describe slow axonal
transport in vivo. By computer simulation of the equations
of the model, the authors demonstrated that they could
generate transport kinetics similar to those observed in ra-
dioisotopic pulse-labeling experiments.

In recent years, considerable progress has been made in
the study of neurofilament transport in axons and it is now
clear that the motile behavior is quite different from the
behavior modeled by Blum and Reed. Specifically, direct
observations on neurofilaments in axons of cultured pri-
mary neurons using fluorescence microscopy have demon-
strated that these polymers actually move at rates of ~0.4—
0.6 um/s, approaching the rate of fast axonal transport and
that these rapid movements are also intermittent, bidirec-
tional and highly asynchronous (Wang et al., 2000; Roy et al.,
2000; Yabe et al., 2001; Wang and Brown, 2001; Ackerley et
al., 2003). Based on these observations, it has been proposed
that axonal neurofilaments are actually transported by fast
motors and that the overall rate of movement is slow be-
cause the filaments spend some of their time moving retro-
gradely and most of their time not moving at all. In other
words, the slow rate of movement is an average of rapid
bidirectional movements interrupted by prolonged pauses.
We refer to this as the stop-and-go hypothesis of slow axonal
transport, and we speculate that it may also explain the slow
movement of other cytoskeletal and cytosolic proteins that
are conveyed by slow axonal transport (Brown, 2000). This
hypothesis combines features of two longstanding compet-
ing hypotheses, the unitary hypothesis of Ochs (1975) and
the structural hypothesis of Lasek (Tytell et al., 1981), and
thus it may go some way to reconciling those two appar-
ently disparate perspectives.

A critical test of the stop-and-go hypothesis is whether it
can explain the radioisotopic pulse-labeling kinetics in vivo.
Specifically, can the rapid infrequent movements of neuro-
filaments observed in cultured neurons on a time scale of
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seconds or minutes account for the kinetics of movement of
populations of neurofilaments observed in living organisms
on a time scale of weeks or months? Because it is presently
not possible to examine the behavior of individual neuro-
filaments in vivo, we have used a computational modeling
approach. Here we present a stochastic model of neurofila-
ment transport in axons based on a detailed kinetic analysis
of the moving and pausing behavior of individual neuro-
filaments observed in cultured nerve cells. We propose that
neurofilaments move along cytoskeletal tracks, exhibiting
short bouts of rapid movement interrupted by short “on-
track” pauses and that they can temporarily disengage from
their tracks, resulting in more prolonged “off-track” pauses.
Our model predicts that axonal neurofilaments spend 8% of
their time on track and 97% of their time pausing during
their journey along the axon. Thus the bidirectional stop-
and-go movements of neurofilaments observed by fluores-
cence microscopy in cultured neurons can explain the kinet-
ics of neurofilament transport observed by radioisotopic
pulse labeling in vivo.

METHODS
A Model for Neurofilament Transport

We consider that neurofilaments are cargo structures that move intermittently
in both anterograde and retrograde directions along cytoskeletal tracks. The
movements in both directions are rapid, but the overall rate is slow because
the filaments spend most of their time pausing. Our studies on cultured
neurons indicate that each neurofilament appears to have a single preferred
direction of movement and that reversals are rare (Wang et al., 2000; Wang
and Brown, 2001). For example, most filaments that pause subsequently
resume movement in the same direction in which they were moving before
pausing. Thus we assume that neurofilaments can switch between two rela-
tively persistent directional states, anterograde or retrograde, and that neu-
rofilaments can move or pause in either state. The net direction is anterograde
because neurofilaments spend more time moving anterogradely than retro-
gradely. As a first approximation, we assume that the transport properties of
the neurofilaments do not vary with respect to location along the axon. We
also assume that the axon is long so that we can ignore events at the proximal
and distal ends.

In our experimental studies, the neurofilaments that we tracked spent
~70% of their time pausing (Wang et al., 2000; Wang and Brown, 2001).
However, we have noted previously that these studies underestimated the
true overall pausing behavior (Wang et al., 2000). The reason for this is that
our measurements relied on the observation of short gaps in the neurofila-
ment array and we were only able to track neurofilaments that moved into
these gaps during the period of observation. The fact that the edges of the
gaps remained fixed throughout most of our movies indicates that many
filaments flanking the gaps paused throughout the observation period, yet we
were unable to track these filaments because they could not be resolved from
their neighbors. To explain these observations, we propose that in each
directional state (anterograde or retrograde), axonal neurofilaments can
switch between two additional states: a state in which neurofilaments alter-
nate between bouts of rapid movement interrupted by short pauses, corre-
sponding to the motile behavior observed in our live cell imaging studies, and
a state in which neurofilaments pause for more prolonged periods without
any movement. For the purposes of this model, we refer to these states as on
track and off track.

Assignment of Rate Constants and Probabilities

Assuming that neurofilaments can be either anterograde or retrograde and
either on track or off track, we can define four distinct kinetic states: on track
in the anterograde state, off track in the anterograde state, on track in the
retrograde state and off track in the retrograde state (Figure 1). To determine
whether neurofilaments are in the anterograde or retrograde state, we define
a reversal rate constant ki, which represents the average number of times
per second that an anterograde filament becomes retrograde, and a reversal
rate constant kg, which represents the average number of times per second
that a retrograde filament becomes anterograde. We also define an overall
reversal rate, kggy = kag + kga. To determine whether the neurofilaments
are on or off track, we define a rate constant korr, which represents the
average number of times per second that an on-track filament moves off track,
and a rate constant ko, which represents the average number of times per
second that an off-track filament moves on track. As a first approximation, we
assume that these rate constants are the same for both anterograde and
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Figure 1. A model for neurofilament transport. We propose that
neurofilaments can switch between four states: on track in the
anterograde state, off track in the anterograde state, on track in the
retrograde state, and off-track in the retrograde state. Neurofila-
ments that are on track alternate between brief bouts of rapid
movement and short pauses, whereas those that are off track are
temporarily incapable of movement and exhibit more prolonged
pauses. The moving and pausing behavior of the on-track neuro-
filaments is dictated by the transition probabilities obtained from
our original live-cell imaging data (see Table 1). ko and kg are
the rates of moving on and off track, respectively (as a first approx-
imation, we assume that these rates are the same for filaments in
both the anterograde and retrograde states). k,r is the rate that
neurofilaments switch from the anterograde state to the retrograde
state and kg, is the rate that neurofilaments switch from the retro-
grade state to the anterograde state (we assume that these rates are
the same for both the on-track and off-track states). Note that
neurofilaments can exist in the anterograde and retrograde states
when they are on and off track but they can only move when they
are on track.

retrograde filaments. Because the simulations in the present study were all
performed using a fixed time interval, we express the rate constants as events
per time interval rather than per second.

Observations on neurofilaments in cultured nerve cells indicate that the
moving and pausing behavior shows no apparent regularity or predictability
that might imply a deterministic mechanism. Thus we assume that the mov-
ing and pausing behavior can be modeled as a stochastic process described by
a series of transition probabilities. Assuming that the transitions of neurofila-
ments between the on track and off track states are described by a two-state
master equation (Van Kampen, 1981), the proportion of filaments that are on
track (i.e., the probability of being on track) is given by the ratio pon =
kon/(kon + Kopp) and the proportion that are off track (i.e., the probability
of being off track) is given by the ratio porr = korr/ (kon + Kopr). Similarly,
the proportion of filaments in the retrograde state (i.e., the probability of
being in the retrograde state) is given by the ratio pg = kar/(kar + kra) and
the proportion in the anterograde state (i.e., the probability of being in the
anterograde state) is given by the ratio py = kga/(kar + kga)-

Calculation of Transition Probabilities for the Moving
and Pausing Behavior

An important feature of neurofilament movement that we have noted in our
live cell imaging studies is that there is a persistence to their motile behavior.
Rather than switching randomly between moving and pausing states without
memory, the filaments tend to alternate between bouts of sustained move-
ment and bouts of sustained pausing. This can be seen by visual inspection of
the traces for individual neurofilaments, such as those shown in Figure 4, F-J.
Thus the probability of a filament moving in any given time interval is greater
if it was moving in the previous time interval than if it was pausing in the
previous time interval. Conversely, the probability of a filament pausing in
any given time interval is greater if it was pausing in the previous time
interval than if it was moving in the previous time interval. Depending on the
probabilities of switching between the moving and pausing states, this kind of
behavior can be described as a Markovian process, i.e., one in which the
behavior in any one time interval is dependent on the behavior in the
preceding time interval.

To determine the probability that an on-track neurofilament pauses or
moves at a particular speed, we performed a more detailed analysis of the
moving and pausing behavior of 72 neurofilaments that we tracked in our
previously published study of the movement of neurofilaments in photo-
bleached axons (Wang and Brown, 2001). Implicitly, we assume that the
movements and pauses of those filaments were all on track. The filaments
were tracked for an average of 2.26 min at 4- or 5-s time intervals (average =
4.73 s), and the total number of time intervals for all 72 filaments was 2061. For
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Figure 2. Schematic diagram illustrating the method for calculat-
ing the transition probabilities. For each neurofilament, we calculate
a speed for each successive time interval. To simplify the computa-
tion, we group these interval speeds into discrete speed bins and
then compute the frequency with which movement at a certain
speed is followed by movement at the same speed and at each of the
other speeds. The result is a matrix of transition probabilities. (A) A
simplified hypothetical example of a single neurofilament in which
there are three possible interval speed bins: v, (pausing), v;, and v,.
(B) A matrix of transition probabilities calculated from the hypo-
thetical data in A. Each transition probability, p;;, represents the
probability that a neurofilament moving at speed v; in time interval,
t,, will move at speed v; in the subsequent time interval, t,, ;.

each time interval we calculated an interval speed, which we define as the
distance moved in one time interval divided by the duration of one time
interval. Because we found no evidence for a relationship between the speed
or pausing behavior and the direction of movement (Wang et al., 2000; Wang
and Brown, 2001), we pooled the data for anterograde and retrograde move-
ments. Movements of =0.065 um/s (1 camera pixel per second), which we
estimated to be the limit of the precision of our measurements, were defined

Axonal Transport of Neurofilaments

speed bins: vy: v = 0 (i.e., pausing); vi: 0 < v = 0.5 um/s; v,: 0.5 < v = 1.0
pm/s; v 1.0 <v=15um/s; vy 1.5 <v =20 um/s; v5: 2.0 <v = 2.5 um/s;
and vg: 2.5 < v = 3.0 um/s.

To calculate the probability of switching between these speed bins, we
counted the number of times that a filament moving in speed bin v; moved
in speed bin v; in the subsequent time interval, as shown schematically in
Figure 2. For each value of i, the number of transitions from v; to vj was
expressed as a fraction of the total number of transitions from that value
of i to all values of j. The result was a matrix of 49 transition probabilities,
p(, j) (Table 1). Generally speaking, it can be seen that the probability of
pausing is higher for filaments that are already pausing and lower for
filaments that are moving rapidly and the probability of moving rapidly is
higher for filaments that are already moving rapidly and lower for fila-
ments that are pausing.

The Algorithm

To simulate the movement of neurofilaments, we start with a specified
number of neurofilaments distributed along the axon in a specified manner
and then determine their position and velocity iteratively for a specified
number of time intervals (Figure 3). We use a time interval of 4.73 s, which
represents the average time interval used in our experimental studies (see
above). We consider the location of each neurofilament to be a single point in
space that might be considered the middle of the filament. This is a reasonable
assumption given that the average length of neurofilament polymers is small
relative to the segment length (3 mm) and axon length (several centimeters) in
the radioisotopic pulse-labeling experiments (see below). For simplicity, we
assume that neurofilaments can switch on and off track and between antero-
grade and retrograde states only when they are pausing. If the filament is
moving, we generate a pseudorandom number within the range 0-1 and
compare it to the probabilities in the matrix of transition probabilities in Table
1 to determine whether the filament remains in the same speed bin or
switches to a new speed bin. Then we use the new speed to calculate a new
location for the filament. If the filament is pausing, we generate a pseudo-
random number to determine its directional state (governed by the
probabilities p, and pg) and a second pseudorandom number to determine
whether the filament is on or off track (governed by the probabilities poy and
Porr)- For filaments that are on track, we then determine a new location
for the filament based on the new direction and speed as described above.

as pauses. Using this approach, we obtained a total of 1989 interval speeds. To Pseudorandom numbers are generated using the ran2 algorithm (Press et

simplify the computation, we assigned each interval speed to one of seven al., 1992).
Table 1. Transition probabilities for neurofilament movement
thit
v, (pause) v, Vs, Vs Vy Vs Ve n
t, v, (pause) 0.856 0.112 0.029 0.002 0.001 0.001 0.000 1294
Po,0) Po Po2 P23 P Pos) Po.6)
\] 0.440 0.385 0.115 0.052 0.006 0.000 0.003 364
Pa,o Pay Paz Pas) Pay Pas) Pwe
vV, 0.236 0.311 0.298 0.130 0.019 0.000 0.006 161
Peo Pey Pe2) Pes) Pew Pes) Pee
V3 0.092 0.197 0.263 0.382 0.053 0.013 0.000 76
Pco Pen PG2) PGa) PG4 PG5 Pe.e)
Vy 0.133 0.267 0.267 0.267 0.067 0.000 0.000 15
Pao) Pay Pa2) Pas) Pay Pas) Pae)
Vs 0.000 0.200 0.200 0.400 0.200 0.000 0.000 5
Ps0) Pe1 PG Psa P4 Pes) PG
Vg 0.000 0.000 0.000 0.500 0.000 0.500 0.000 2
P60 Pen P2 P63 P Pes) Pe.6)

This table shows a matrix of 49 transition probabilities calculated from our experimental data on the movement of neurofilaments through
photobleached gaps in the axonal neurofilament array of cultured rat sympathetic neurons (Wang and Brown, 2001). The total number of
filaments tracked was 72 and the time-lapse intervals were 4 or 5 s (average = 4.73 s). The interval speeds for anterograde and retrograde
filaments were pooled and then binned into seven categories: vy (v = 0 um/s), v; (0 < v = 0.5 um/s), v, (0.5 < v = 1.0 um/s), v5 (1.0 <
v =15um/s), vy (1.5 <v =20 pm/s), vs 2.0 < v = 2.5 um/s), and v, (2.5 < v = 3.0 um/s). Each transition probability p;; represents
the probability that a neurofilament moving at speed v; in time interval, t,, will move at speed v; in the subsequent time interval, t,,, ;. For
each element of the matrix, the number of transitions v; — v; is expressed as a fraction of the total number of transitions v; — v; for all values
of j (shown in the column labeled n). The total number of transitions was 1917.
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RESULTS

Initial Estimation of the Parameters of the Model

Our observations in cultured neurons indicate that 31% of
the neurofilaments move retrogradely and 69% move an-
terogradely (Wang and Brown, 2001), so we assume that
pr = 0.31 and p, = 0.69. The rates kpgy, kon, and kogg are
unknown, so we initially estimated the values of these pa-
rameters and subsequently optimized them as described
below. In two separate studies on neurofilament movement
in cultured neurons, we observed a total of 141 filaments for
a total observation time of 5.4 h (4111 time intervals), yet we
observed no sustained reversals (Wang et al., 2000; Wang
and Brown, 2001). In another study, Roy et al. (2000) re-
ported 5 of 73 neurofilaments reversed direction, but some
of those neurofilaments exhibited unusually erratic behav-
ior, reversing multiple times within the short period of
time that they were tracked. Thus the magnitude of kg
is low. As a starting point for our simulations, we assume
kreyv = 0.001 (kyg = 0.00031 and ki, = 0.00069). Because
the existence of distinct on-track and off-track populations
of neurofilaments is hypothetical, we have no experimen-
tal data to guide our selection of values for ko and kogp.
However, we expect that filaments must spend most of
their time off track to account for the overall slow rate of
movement. As a starting point for our simulations, we
assume ko = 0.01 and kopr = 0.1 (~9% of neurofila-
ments on track).

Simulation of the Movement of a Single Neurofilament

To test the model, we first simulated the movement of a
single neurofilament (Figure 4). At the start of the simula-
tion, we consider the filament to be off track in the antero-
grade state. Figure 4, A-E, shows representative excerpts of
the simulated behavior of a single neurofilament, including
both anterograde and retrograde phases of its movement,
assuming kon = 0.01, kope = 0.1, and kggy = 0.001. The
filament exhibited brief bouts of rapid movement inter-
rupted by pauses of varying duration. Consistent with our
experimental data, the transitions between movements and
pauses were abrupt and reversals were rare; in a 24-h sim-
ulation the filament reversed direction eight times, which
represents a frequency of 0.00044 per time interval, consis-
tent with the theoretical prediction p,k g + prkga. Figure
4, F-], shows representative plots of actual neurofilament
behavior observed by time-lapse fluorescence microscopy in
cultured neurons (data from the study of Wang and Brown,
2001). It can be seen that the model generates a motile
behavior very similar to the experimental data, except that
some of the pauses in the simulation are much longer. This
is expected because our model assumes that filaments can
enter an off-track state in which they pause for prolonged
periods (as explained in Materials and Methods, our experi-
mental studies were biased toward the detection of moving
filaments; filaments that did not move during the time that
we observed them could not be tracked and therefore were
excluded from our analyses).

Analysis of the Pause Durations

In a stochastic system characterized by alternating move-
ments and pauses, we can gain insight into the mechanism
of movement by analyzing the frequency distribution of the
pause durations. Specifically, if we consider that there is no
off-track state and we define the rate at which neurofila-
ments transition from the pausing state to a moving state as
kpyy, then a histogram of the pause durations will be expo-
nentially distributed proportional to exp(—kpyt), and the
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Figure 3. Flowchart showing the algorithm used for the simulations.
At the start of each simulations, each filament is assigned to be either
on or off track and either anterograde or retrograde and each filament
is also assigned a speed and a position along the axon (1). Each time
interval (t,,), we determine whether the filament is currently moving or
pausing (2). If the filament is currently moving, then we determine a
new velocity for the next time interval (t,, ) based on the transition
probability matrix (6) and then we calculate a new position (7). If the
filament is currently pausing, then we determine whether it will now
change its directional state based on the probabilities p, and pg (3) and
whether it will now be on or off track based on the probabilities poy
and pogr (4). The next action depends on whether the filament is now
on track or off track (5). If the filament is now on track, then we
determine a new velocity based on the transition probability matrix (6)
and then calculate a new position (7). Alternatively, if the filament is
now off track, then it must remain paused. The flow chart loops once
each time interval. The diamond boxes represent decision points where
the flow chart branches and the square boxes represent calculations or
assignment of values. The symbol of the pair of dice indicates a point
in the algorithm in which the outcome is determined by a random
number generator.

exponential will decrease with a time constant 1/kp,, (Van
Kampen, 1981). If we now consider distinct on-track and
off-track states, with transitions between them dictated by
kon and kopp, then we expect to observe the superimposi-
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Model: simulated movement of one neurofilament
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tual pause duration frequency distributions.
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C, shows the frequency distribution of the actual pause
durations for neurofilaments in cultured neurons (previ-
ously unpublished data from the study of Wang and Brown,
2001). Note that the shape of the predicted distribution is
similar to that of the experimental data (compare Figure 5, B
and C). However, we consider that the experimental data in
Figure 5C is only reliable for short pauses because our
experimental observations underestimate the number and
duration of long pauses (see Materials and Methods). Be-
cause the frequency distribution for short pause durations
can be characterized by its initial slope, we define the
initial slope of the histogram in Figure 5C as the bench-
mark for optimization of the pause distributions in our
model (see below).

Simulation of the Movement of a Population of
Neurofilaments

To investigate the behavior of the model in a radioisotopic
pulse-labeling experiment, we first simulated the movement
of a population of radiolabeled neurofilaments distributed
uniformly along a 3-mm length of axon (i.e., in the form of
a 3-mm-wide square wave; Figure 6 and Supplementary
Video, QuickTime Movie 1). At the start of each simulation,
we considered all filaments to be off track and 31% to be in
the retrograde state. Note, however, that these starting
conditions have no significant effect on the end result be-
cause of the long duration of the simulations (several weeks)
relative to the short duration of the time intervals. We found
that the square wave spreads rapidly to form a Gaussian
wave that continues to spread as it propagates distally,
as generally expected for a stochastic process (for the
specific conditions under which this applies, see Jung ef al.,
1996). Notably, the shape and spreading of this wave is
similar to the behavior described for neurofilaments in vivo
(e.g., Hoffman et al., 1985; Jung and Shea, 1999; Xu and Tung,
2000).

To characterize the model further, we investigated the
effect of kon, kopp, and kggy on the transport kinetics (Fig-
ure 7). To avoid artifacts associated with the initial transition
from a square wave to a Gaussian wave, we used a Gaussian
wave as the starting point for each simulation. We then ran
multiple simulations and systematically varied three param-
eters: the ratio kon/kopp, keeping the magnitude of kopp
constant (Figure 7, A-C); the magnitudes of koy and kogg,
keeping the ratio kon /kopr constant (Figure 7, D-F); and the
magnitude of kgpy = kga + kg, keeping the ratio kg /kga
constant (Figure 7, G-I). As expected, for all conditions
tested, the wave propagates anterogradely at a constant rate.
We found that varying the ratio kon/kopp While keeping
kopr constant affects both the average velocity (Figure 7A)
and the spreading of the wave (Figure 7B), whereas varying
kon and kopp while keeping the ratio kon/kopp constant
does not affect the average velocity (Figure 7D) but does
affect the spreading (Figure 7E). Varying kg has no effect
on the average velocity (Figure 7G), but does affect the
spreading (Figure 7H).

Figure 7, C, F, and I, shows the effects of varying ko,
kopp, and kggy on the pause durations. The curves are
biphasic, as described above, but the inflection between the
two phases of the curves increases with decreasing kqoy/
kopp ratio, keeping the magnitude of ko constant (Figure
7C) and also with decreasing magnitudes of ko and kogg,
keeping the ko /kopg ratio constant (Figure 7F). Varying
the kon/kopr ratio while keeping ko constant has no effect
on the initial slope of the pause duration frequency distri-
bution (primarily on-track pauses), but does have a marked
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Figure 6. The model produces a Gaussian wave. Simulated move-
ment of a pulse of 1,000,000 radiolabeled neurofilaments along a
nerve for 21 d starting with a 3-mm-wide square wave and assum-
ing kon = 0.01, kogg = 0.1, and kggy = 0.001. The positions of the
neurofilaments were binned into 0.1-mm segments at 0.5-d inter-
vals. The square wave adopts a Gaussian wave form as the neuro-
filaments move along the axon, reminiscent of the bell-shaped
waves observed in radioisotopic pulse-labeling experiments. See
Supplementary Video QuickTime Movie 1.

effect on the distribution for longer pause durations (Figure
7C), whereas varying the magnitude of ko and ko while
keeping the ratio constant affects the distribution of both
short and long pause durations (Figure 7F). Varying kg
has no effect on the pause durations (Figure 7I)

In summary, the only parameter that affects the average
rate of movement is the ratio ko /kopp (Figure 7A). Both the
ratio kon/kopr and the magnitudes of ko and kopp affect
the pause duration distribution (Figure 7, C and F), but the
only parameters that affect the initial slope are the magni-
tudes of koy and kogp. (Figure 7F). All three parameters
affect the spreading of the wave, but only kgg, does so
without affecting the pause duration frequency distribution
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Figure 7. Effect of kon, kopp, and kgpy on the velocity, spreading, and pause duration frequency distribution of the neurofilament
population in a simulated pulse-labeling experiment. All simulations were performed with 20,000 neurofilaments for a period of 14 d, starting
with the neurofilaments distributed in a Gaussian waveform optimized to match the experimental data of Xu and Tung (2000) at day 7 (see
Figure 8). (A-C) Effect of varying the ratio ko kopr, keeping kope = 0.1. (D-F) Effect of varying kon and kogg, keeping the ratio kon/kopr =
1/10. (G-I) Effect of varying the rate of reversal, kgpy = kar + kga, keeping k r/kga = 31/69. (A, D, and G) The average distance
moved by the neurofilaments as a function of time. (B, E, and H) The width of the wave (expressed as the SD of the Gaussian wave)
as a function of time. (C, F, and I) The pause duration frequency distributions for the neurofilaments summated over the entire

simulation (log-log plots).

(Figure 7I). Thus, any given combination of average rate,
spreading, and pause duration frequency distribution in this
model corresponds to a single unique combination of values
for the parameters kon, kopp, and kggy-
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Optimization of the Parameters to Match the In Vivo
Data

To test whether the model can explain the kinetics of neu-
rofilament transport in vivo, we examined whether it can
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Figure 8. Experimental radioisotopic pulse-labeling data for neu-
rofilament protein L in mouse ventral root and sciatic nerve, pro-
vided by Zuoshang Xu (Xu and Tung, 2000). The segment length
was 3 mm. The data are normalized to the total amount of radio-
active neurofilament protein L in the nerve and plotted as a function
of distance from the spinal cord. (A) 7 d after isotope injection. (B)
Twenty-one days after isotope injection. Each point is the mean of
three to five nerves. The error bars represent the SE of the mean
(SEM). The curves were drawn using a cubic spline curve-fitting
algorithm. Note that there is considerable statistical error associated
with radioisotopic pulse-labeling data because each point is the
average of data from multiple animals, each of which corresponds
to a separate isotope injection. The hump to the left of the peak in
the experimental data at 21 d is an example of this statistical vari-
ability; it is not a consistent feature of the neurofilament transport
kinetics in these nerves (Xu and Tung, 2000, 2001).

match the shape, rate, and spreading of the wave for a real
set of pulse-labeling data, while at the same time matching
the initial slope of the pause duration frequency distribu-
tion. Because it is not possible to measure the pause dura-
tions of neurofilaments experimentally in vivo, we used our
data from cultured neurons (Figure 5C). We chose to model
the radioisotopic pulse-labeling data of Xu and Tung (2000)
for neurofilament protein L in ventral root and sciatic nerve
motor axons of wild-type mice because this is one of the few
published data sets for which the statistical error has been
calculated for each data point (Figure 8). In the Xu and Tung
study, the average velocity of neurofilament transport was
found to be approximately constant during the first 3 wk
and then slowed at later times, indicating that the velocity of
neurofilament transport varies along the length of these
axons (see Discussion). For the purposes of this study, we
chose to focus on the initial 3-wk period when the velocity is
constant. Because the exact length, duration, and shape of
the starting pulse in the pulse-labeling experiments is not
known, we started our simulations with a distribution of
neurofilaments that matches the day 7 data (Figure 8A), at
which time most of the filaments had entered the ventral
root, and then attempted to match the distribution of neu-
rofilaments at day 21, 2 wk later (Figure 8B).

Figure 9 shows the results of our simulations of the Xu
and Tung data. For ease of computation, we fit the day 7
data using a Gaussian function and used this Gaussian curve
as the starting distribution for our simulations (Figure 9A).
Note that the Gaussian curve matches the experimental data
closely, though there is a slight discrepancy at the leading
edge. Using our initial “best guess” values for the model
parameters (kon = 0.01, kopr = 0.1, kggy = 0.001), we found
that the simulated neurofilament population moved too fast
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and did not spread enough compared with the experimental
data (Figure 9B). In addition, the initial slope of the pause
duration frequency distribution did not match the experi-
mental data (Figure 9G). We have shown above that the only
parameter or combination of parameters that affects average
velocity in our model is the ratio kon/kopr (Figure 7). By
decreasing kqn/kopr to 0.0083, we were able to match the
average velocity of the experimental data (Figure 9C). This
had little effect on width of the wave because the ratio
kon/kopr has little effect on spreading at low ratios (Figure
7B). As expected, based our earlier findings (Figure 7C),
changing ko /kopr had no effect on the initial slope of the
pause duration frequency histogram (Figure 9H).

We have shown above that the only parameters in our
model that affect the initial slope of the pause duration
frequency histogram are the magnitudes of koy and kopg.
By increasing the magnitudes of koy and kogg to 0.0175/
0.211, keeping the ratio constant, we were able to match the
initial slope of the pause duration frequency histogram (Fig-
ure 9I). As expected, based on our earlier findings (Figure
7D), this had no effect on the average velocity (Figure 9D).
Finally, we were able to match the spreading of the wave by
decreasing kygy to 0.00012 (Figure 9E). As expected, based
on our earlier findings (Figure 7, G and I), this had no effect
on the average velocity or the pause durations. Thus we are
able to match the experimental data with a particular com-
bination of values for the parameters koy, kopp, and krgy
and this is a unique solution under the constraints of our
model; no other combination of these parameters can match
the data.

Because the existence of distinct on-track and off-track
populations of neurofilaments is hypothetical, we examined
whether we could match the experimental data if we as-
sumed that all neurofilaments are on track (this is the equiv-
alent of assuming kopr = 0 in our model). As expected, we
found that the pulse of radiolabeled neurofilaments moved
too fast and the wave spread too little (data not shown). The
spreading could be increased by decreasing kggy, but this
had no effect on the velocity because the only way to affect
average velocity in our model is to alter the ratio kon/kopr
(Figure 7G). We also examined whether we could match the
experimental data if we assumed that neurofilaments can
only move anterogradely (this is the equivalent of assuming
kag = 0 and kg, = 1 in our model). Under this condition,
the wave moved too fast and spread too little, and there was
no combination of koy and kopp that could match the ex-
perimental data (data not shown). Thus our model cannot
match the in vivo experimental data unless we assume that
there are distinct on-track and off-track populations of neu-
rofilaments in vivo and that neurofilament transport is bidi-
rectional in vivo.

Figure 10 and Supplementary Video QuickTime Movie 2
show a simulated radioisotopic pulse-labeling experiment
using the final optimized parameters obtained above, and
Figure 11 shows the average velocity, spreading, and pause
duration frequency distribution for this simulation. Supple-
mentary Video QuickTime Movie 3 is a graphic representa-
tion of the simulated behavior for 22 neurofilaments in a
200-pum segment of axon over a period of 1 h. Because the
plots in Figure 11 represent the result of our optimized
simulation, they can be considered to be predictions of neu-
rofilament behavior in vivo. The average distance moved
was linear with respect to time, with an average velocity of
0.56 mm/d (Figure 11A). The spreading of the wave in-
creased in a nonlinear manner (Figure 11B) and was propor-
tional to /2 when the simulation was extended to longer
times (data not shown). Based on the optimized values of the

Molecular Biology of the Cell



Axonal Transport of Neurofilaments

Model (3 mm segments) — Model
--------- Experimental (3 mm segments) [ Experimental
50 =
100 5+—
§ % 7d| 8 F
c
. ] o
Starting E 307 s
distribution E 04 =
=] 5]
e w 107
R 404 g —’_'7
e E
0 R T T 2
50 B n
Too fast and ] =
w407 too narrow 21d = o
k. =0.01 =4 0 =
oN Q (7] =]
£ 307 g e
k... =0.1 =z 8 ®
OFF = 204 f_l 4
_ ‘s 5] P
k.., =0.001 S : |
E —
1] T T T §
50 0
C Match average 21d s =
= u 404 velocity = o
k., = 0.0083 e 2 s
g E 304 £ =3
K 0.1 s g 5
k.., = 0.001 B 2 5 -~
E 3 |
E —
1] T =4 T =
50 D @
Match pause ] o
k =00175 2 40 durations 21d % ;
ON i o @ b =]
= E %7 2 B
k... =0211 3 o 3 g
b~ b — w
k., =0.001 5 5 =
REV I g |
S E -
1] T T T E
i E e Jro
Match wave © 10@-_5Y r
@ 40 spreadin 21d < 3 4
k,, =0.0175 £ prEaed 2 5? S
E 304 o o
k., = 0211 s 8 g
e =3 w0
k.. =0.00012 2 S 104 —
REV = E E |
E 1 -
T = T T T
40 0 10 20 30 40 50 60
Distance (mm) Pause duration (s)

Figure 9. Optimization of the model to match the experimental data. We systematically varied the parameters ko, kopg, and kggy in order
to match the model to the experimental radioisotopic pulse-labeling data of Xu and Tung (2000). All simulations were performed with 20,000
neurofilaments for a period of 14 d, starting with the neurofilaments distributed in a Gaussian waveform that closely matches the
experimental data at day 7 (see Figure 8). The positions of the neurofilaments generated by the model were binned into 3-mm segments and
fitted with a Gaussian curve. The optimization of the rate and spreading of the wave is shown in A-E. The dashed lines represent the
experimental data for neurofilament protein L in mouse ventral root and sciatic nerve and the solid lines represent the simulated data. The
optimization of the initial slope of the pause duration frequency distribution is shown in F-J (semilog plots). The bars represent the
experimental pause duration frequency distribution (for durations <60 s; data from Figure 5C) and the solid lines represent the initial slope
of the pause duration frequency distribution for the model. (A) Experimental data at day 7, and the corresponding Gaussian curve fit. (B-E)
Comparison of the experimental and simulated transport waves at 21 d after injection. (F-J) Comparison of the experimental and simulated
pause duration frequency distributions at 21 d after injection. The values of the parameters koy;, Ko, and kggy used for the simulations are
indicated to the left of the plots. Using our initial “best guess” values for the parameters, the wave moves too fast and does not spread enough
(B) and the initial slope of the pause duration frequency distribution does not match the experimental data (G). Reducing the ratio kon/kogs
reduces the average velocity (C) but does not affect the pause duration frequency distribution (H). Increasing koy and kogg, keeping the ratio
kon/kopr constant has little effect on the wave (D), but reduces the initial slope of the pause duration frequency distribution (I). Finally,
reducing kpgy increases the spreading (E) without affecting the pause durations (J). The resulting simulated wave is statistically indistin-
guishable from the experimental data (p < 0.005, Kolmogorov-Smirnov test for goodness of fit). Thus the model can match the experimental
data, assuming kon = 0.0175, kopp = 0.211, and kggy = 0.00012.
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Figure 10. Optimized simulation of neurofilament protein trans-
port in vivo. Final simulation for a pulse of 1,000,000 radio-labeled
neurofilaments starting with a Gaussian wave that approximates
the experimental data of Xu and Tung (2000) at day 7 and using the
optimized parameters obtained from Figure 9 (kon = 0.0175, kKogg =
0.211, and kggy = 0.00012). The positions of the neurofilaments were
binned into 0.1-mm segments and sampled at 0.5-d intervals. The
wave maintains its Gaussian shape but spreads as it moves distally,
closely matching the experimental data at day 21. See Supplemen-
tary Video QuickTime Movie 2.

parameters koy and kopg, the average proportion of the
neurofilaments that was on track at any point in time was
8.0%. This number is slightly larger than k ./ (kox + Kope) =
0.077 (i.e., 7.7% on track) because we assume that a filament
cannot switch off track while it is moving. The average
duration of continuous uninterrupted pausing was 430 s,

Movement of wave Spreading of wave

6.0

but the range was large. For example, ~38% of the pauses
were 1 min or less in duration and 16% of the pauses were
15 min or more in duration (Figure 11C). Moreover, the
average duration of sustained uninterrupted movement was
only 14 s. Thus movements were brief and pauses were
prolonged. On average, the filaments spent 97% of their time
pausing.

DISCUSSION

Validation of the Stop-and-Go Hypothesis

We have described a stochastic model of neurofilament
movement in axons based on a detailed analysis of the
moving and pausing behavior of neurofilaments in cultured
nerve cells. The key features of our model are that neuro-
filaments move in both anterograde and retrograde direc-
tions along cytoskeletal tracks, alternating between short
bouts of rapid movement and short pauses, and that they
can temporarily disengage from these tracks, resulting in
more prolonged pauses. To test our model, we simulated a
radioisotopic pulse-labeling experiment in mouse ventral
root and sciatic nerve. We show that the model generates a
Gaussian waveform that is very similar to the waves ob-
served in vivo. By systematically varying the parameters of
the model, we obtained a single unique solution that could
match the shape, rate, and spreading of the radiolabeled
neurofilaments. Thus the moving and pausing behavior of
neurofilaments observed by live cell fluorescence imaging in
cultured nerve cells can explain the kinetics of slow axonal
transport in vivo, which is a central tenet of the stop-and-go
hypothesis. On the basis of the optimized values of the
parameters in the model, we can make several predictions
concerning the mechanism of movement in the motor axons
of mouse ventral root and sciatic nerve: first, that neurofila-
ment movement is bidirectional; second, that the frequency
of reversals is low; third, that neurofilaments spend ~8% of
their time on track; and fourth, that neurofilaments spend
97% of the time pausing during their journey along these
axons. These predictions are discussed in more detail below.

Neurofilament Transport Is Bidirectional In Vivo

The idea that slow axonal transport may be a bidirectional
process was first proposed more than a decade ago by
Griffin and colleagues, based on their analysis of the distri-
bution of cytoskeletal proteins in transected peripheral
nerves in Ola mice, which exhibit delayed Wallerian degen-
eration. These authors reported that neurofilament and
other cytoskeletal proteins accumulated proximally as well
as distally in the isolated nerve segments, implying that a
proportion of cytoskeletal proteins move retrogradely in
vivo (Watson ef al., 1993; Glass and Griffin, 1994). This
conclusion is supported by studies on transgenic mice over-

Figure 11. Analysis of neurofilament behav-
ior for the optimized simulation shown in

Pause durations
(log-log plot)

Figure 10. (A) Mean distance traveled plotted
as a function of time. Note that the rate is
constant (0.56 mm/d). (B) Width of wave (ex-
pressed as the SD) plotted as a function of
time. (C) Pause duration frequency distribu-
tion. Note that the pause durations span a
very wide range, from pauses as short as one
time interval (4.73 s) to pauses in excess of
several hours. On average, pauses were pro-

C

E -
E n{A E 5.5 B _.".
2 = 504 R ' ¢
T 11 g ¥ % 2 10
i .{ T 459 P § :
8 e = i .- T 104
: f/ 3 40 3 &
= =
o I 359 e = 5
A : 1074
o 7 Rate=0.56 mmiday = b
= 3 304,
b n i
= 5 T T 25 T T 10
[} 5 10 15 o 5 10 15
Time (days) Time (days)
4252

= = . longed (average = 430 s), movements were

brief (average = 14 s), and the filaments spent

Fatise:dliration (2). 97% of their time pausing.

Molecular Biology of the Cell



expressing the p50/dynamitin subunit of dynactin. These
mice develop a motor neuron disease characterized by ac-
cumulations of neurofilaments in axons, which implies that
the activity of a retrograde microtubule motor is important
for neurofilament transport along axons in vivo (LaMonte et
al., 2002). Our computational modeling studies lend further
support to this notion. Specifically, we were unable to match
the kinetics of neurofilament transport in mouse spinal mo-
tor neurons unless we assumed that neurofilaments move
bidirectionally and that the frequency of reversals is low. In
fact, these bidirectional excursions appear to be a significant
contributor to the spreading of the wave.

Neurofilaments Can Pause for Prolonged Periods

Our model assumes that neurofilaments can exist in two
states that differ in their pausing behavior. We refer to these
states as on track and off track. Neurofilaments that are on
track exhibit short bouts of rapid movement interrupted by
short pauses, whereas neurofilaments that are off track are
stationary for prolonged periods. In mouse lumbar spinal
motor axons, we predict that neurofilaments spend 92% of
their time pausing off track as they move along the axon. The
idea that axonal neurofilaments spend a significant propor-
tion of their time in a stationary state was originally pro-
posed by Nixon and Logvinenko (1986) based on their anal-
ysis of the axonal transport of radiolabeled neurofilament
proteins in mouse optic nerve. The data in that study were
subsequently disputed on technical grounds (Lasek et al.,
1992), sparking a vigorous debate. In essence, the principal
issue has been whether the data in the original Nixon and
Logvinenko study represent pure neurofilament transport
kinetics or whether the kinetics were contaminated with
cytosolic proteins that comigrate with neurofilament pro-
teins when subjected to one-dimensional SDS-PAGE. Al-
though this controversy remains unresolved, our modeling
indicates that the basic idea that neurofilaments may be
stationary for prolonged periods during their transit along
axons does appear to be correct. In fact, our modeling pre-
dicts that neurofilaments in mouse lumbar spinal motor
axons spend only 3% of the time moving.

Mechanistically, we consider that on track and off track
neurofilaments could differ in some way that influences
their capability for movement. One factor that may regulate
the frequency of neurofilament movement is phosphoryla-
tion of neurofilament protein H (Ackerley et al., 2003). The
molecular mechanism of this effect is not known, though it is
attractive to speculate that neurofilament phosphorylation
might act by affecting the activity of neurofilament motors or
their affinity for the neurofilament cargo. Although our
model does not assume the identity of the tracks along
which neurofilaments move, it is likely that they are micro-
tubules. For example, neurofilaments have been shown to
move along microtubule polymers in vitro (Shah et al., 2000)
and there is evidence that neurofilaments are transported by
microtubule motors (see below). Neurofilaments have been
shown to interact with myosin Va, which suggests that they
may also be capable of moving along microfilaments, but a
recent study in cultured neurons has shown that neurofila-
ment movement can be abolished by depolymerizing micro-
tubules but not by depolymerizing microfilaments (Francis
et al., 2005), which suggests that microtubules are the prin-
cipal substrate. Assuming that microtubules are the tracks, it
is interesting to note that in myelinated axons, which con-
tribute more than 95% of the slowly transported radioactiv-
ity in the radioisotopic pulse-labeling studies (Wujek et al.,
1986), neurofilaments generally outnumber microtubules.
For example, in the sciatic nerve of 14-wk-old mice, neuro-
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filaments outnumber microtubules by 7:1 in small axons
(<1.5 um internodal diameter) and by 16:1 in large axons
(>3.5 wm internodal diameter; Reles and Friede, 1991). In
occulomotor nerve of 4-wk-old chickens, neurofilaments
outnumber microtubules by 69:1 in somatic motor axons and
97:1 in parasympathetic axons (Price et al., 1988). A conse-
quence of this high axonal neurofilament:microtubule ratio
is that at any given point in time many neurofilaments may
not be adjacent to a microtubule. Thus one factor that may
contribute to the distinct pausing behavior of neurofilaments
in the on track and/or off track states is their proximity to
the tracks along which they move.

The Significance of the Bell-shaped Waves

The bell-shaped waves characteristic of radioisotopic pulse-
labeling studies on slow axonal transport were first de-
scribed more than 25 years ago, yet remarkably little is
known about how they are generated. In the present study,
we show that the bell-shaped waves obtained for neurofila-
ments in mouse ventral root and sciatic nerve are approxi-
mately Gaussian and can be considered to represent the
movement of a population of filaments at a broad range of
rates, dictated largely by stochastic variation in the direction
and frequency of movement. At any point in time those
neurofilaments at the leading edge of the wave happened to
have moved more frequently than others, or more consis-
tently in an anterograde direction, whereas those at the
trailing edge of the wave happened to have moved less
frequently, or more frequently in a retrograde direction.
Over time, the population spreads apart but the net direc-
tion is anterograde because on average the filaments spend
more time moving anterogradely than retrogradely. Accord-
ing to this perspective, individual filaments can sustain
rapid rates of movement for short periods of time, but all
filaments eventually pause or reverse direction and thus the
average velocity is slow. However, it should be noted that
spreading Gaussian waves can be generated by a variety of
different mechanisms, and thus they are certainly not unique
to our model. In fact, similar kinetics were observed by Blum
and Reed (1989) based on the assumption that neurofilament
transport is a slow unidirectional movement. Thus the sig-
nificance of our modeling is not so much that we can match
the experimental data in vivo, but that we can do so with a
model based actual experimental measurements of the stop-
and-go motile behavior of neurofilaments in living cells.

Temporal and Spatial Variations in Neurofilament
Transport Behavior

In this study, we showed that our model can match the
kinetics of neurofilament transport in vivo when the average
velocity of movement is constant. However, there are exam-
ples in the literature in which the average rate of neurofila-
ment transport varies both spatially and temporally. For
example, Xu and Tung (2000, 2001) have shown that rate of
neurofilament transport in mouse lumbar ventral root and
sciatic nerve decreases abruptly ~12-15 mm from the spinal
cord, which corresponds to the point at which the motor
axons emerge from the vertebral foramen. In addition, Hoff-
man and colleagues have reported a slowing of neurofila-
ment transport with both developmental age and distance
along the axons in lumbar ventral root and sciatic nerve of
rats (Hoffman et al., 1983, 1985). In our model of neurofila-
ment transport, the average velocity of the wave of radiola-
beled proteins is determined by the ratio kon/Kopg i-e., the
proportion of time that the neurofilaments spend in the on
track state, and the ratio k,/kg, i.e., the proportion of the
time that the neurofilaments spend in the anterograde state
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(see Figure 7). Thus we hypothesize that the decrease in
transport velocity observed along lumbar spinal motor ax-
ons in mice and rats could be due to a decrease in the
proportion of time that the filaments spend on track or an
increase in the proportion of time that the filaments spend in
the retrograde state. This could arise, for example, by spatial
or temporal regulation of the binding or activity of the
neurofilament motors. In future we plan to extend our mod-
eling to address specifically the mechanisms that could ac-
count for temporal and spatial variations in transport veloc-
ity, because it is likely that such mechanisms are critical for
regulating the steady state distribution of neurofilaments
along axons. However, to test these hypotheses experimen-
tally it will be necessary to develop new approaches that are
capable of analyzing neurofilament pausing and direction-
ality in vivo, which is a significant challenge.

The Relationship between Fast and Slow Axonal
Transport

The average velocity of neurofilament transport excluding
pauses is ~0.5 um/s (Wang and Brown, 2001), which ap-
proaches the average velocity of membranous organelles in
axons (Hill ef al., 2004). Thus it is possible that the cargoes of
fast and slow axonal transport share similar or identical
motors. In fact, there is now good evidence that dynein is the
retrograde motor for neurofilaments (Shah ef al., 2000; Hel-
fand et al., 2003; Wagner et al., 2004; He et al., 2005) and
dynein is also a known retrograde motor for membranous
organelles (Vallee ef al., 2004). Likewise, conventional kine-
sin or its KIF5A isoform have been proposed to be the
anterograde motor for neurofilaments (Yabe et al., 1999;
Helfand et al., 2003; Xia et al., 2003) and at least one of the
KIF5 isoforms, KIF5B, is a known anterograde motor for
some membranous organelles (Hirokawa and Takemura,
2005). In fact, the similarities between fast and slow axonal
transport also extend to the pattern of movement itself.
Direct observations on the movement of membranous or-
ganelles indicate that they can exhibit stop-and-go move-
ments reminiscent of the behavior of neurofilaments (Zhou
et al., 2001; Zahn et al., 2004) and the similarity is particularly
striking for mitochondria, which move in a very intermittent
manner (Hollenbeck, 1996; Ligon and Steward, 2000).

The fact that cargoes of fast and slow axonal transport are
both conveyed by fast motors and can both exhibit stop-
and-go movements might cause one to question whether
there is really any difference between fast and slow axonal
transport. In answer to this question, it is important to note
that even though these distinct cargoes move at similar rates
on a time scale of seconds or minutes, they clearly move at
very different rates on a time scale of hours or days. How-
ever, this difference in overall rate is due primarily to dif-
ferences in the amount of time spent pausing rather than to
differences in the rate of movement. Thus the principal
difference between fast and slow axonal transport is not the
mechanism of movement per se but rather the mechanism
by which the movement is regulated. Cytoskeletal and cy-
tosolic protein complexes, including cytoskeletal polymers,
form the slow components of axonal transport because they
spend only a small fraction of their time moving. In contrast,
membranous organelles such as Golgi-derived vesicles form
the fast components of axonal transport because they spend
a much higher proportion of their time moving. Thus the
regulation of motor protein activity or motor-cargo interac-
tions may be key to understanding the differences between
fast and slow axonal transport (Brown, 2003).
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