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Johnson C, Holmes WR, Brown A, Jung P. Minimizing the
caliber of myelinated axons by means of nodal constrictions. J
Neurophysiol 114: 1874—1884, 2015. First published July 29, 2015;
doi:10.1152/jn.00338.2015.—In myelinated axons, most of the volt-
age-gated ion channels are concentrated at the nodes of Ranvier,
which are short gaps in the myelin sheath. This arrangement leads to
saltatory conduction and a larger conduction velocity than in nonmy-
elinated axons. Intriguingly, axons in the peripheral nervous system
that exceed about 2 wm in diameter exhibit a characteristic narrowing
of the axon at nodes that results in a local reduction of the axonal
cross-sectional area. The extent of constriction increases with increas-
ing internodal axonal caliber, reaching a threefold reduction in diam-
eter for the largest axons. In this paper, we use computational
modeling to investigate the effect of nodal constrictions on axonal
conduction velocity. For a fixed number of ion channels, we find that
there is an optimal extent of nodal constriction which minimizes the
internodal axon caliber that is required to achieve a given target
conduction velocity, and we show that this is sensitive to the precise
geometry of the axon and myelin sheath in the flanking paranodal
regions. Thus axonal constrictions at nodes of Ranvier appear to be a
biological adaptation to minimize axonal volume, thereby maximizing
the spatial and metabolic efficiency of these processes, which can be
a significant evolutionary constraint. We show that the optimal nodal
morphologies are relatively insensitive to changes in the number of
nodal sodium channels.

axon morphology; computational modeling; nodal constrictions; node
of Ranvier; conduction velocity

NEURONS SIGNAL TO EACH OTHER and to other cell types via action
potentials, which are waves of membrane depolarization that
propagate along long, slender projections called axons. Thus
the speed of neuronal communication is limited by the axonal
conduction velocity, and for long axons this can result in a
significant delay. Two important ways in which animals max-
imize axonal conduction velocity are to increase axonal cross-
sectional area, which reduces the internal resistance to the
longitudinal diffusion of ions, and to myelinate axons, which
allows for saltatory nerve conduction. Each of these strategies
comes with metabolic costs (Hartline and Colman 2007). Large
caliber axons require more metabolic investment for their
growth and maintenance because of their larger volume and
surface area, and they also increase body size. Myelination
allows fast conduction velocities with much thinner axons,
requiring less axonal metabolic investment and smaller body
size, but this also requires metabolic investment in the growth
and maintenance of the myelinating glia (Harris et al. 2012).
Thus there are evolutionary constraints on the strategies that
animals adopt to maximize axonal conduction velocity.
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The myelin sheath of myelinated axons is discontinuous,
consisting of discrete myelinated segments called internodes
that are separated by short gaps called nodes of Ranvier, where
the axon has direct access to the extracellular space (Arroyo
and Scherer 2000; Poliak and Peles 2003; Salzer et al. 2008;
Swird et al. 1995). The voltage-gated sodium channels, which
are responsible for the large inward current that generates the
action potential, are largely confined to the nodes, where they
are present at very high density. Each internode is myelinated
by a single myelinating cell (Schwann cell), which extends a
sheetlike protrusion that wraps the axon spirally. Immediately
flanking each node are paranodal regions, where the myelin
lamellae terminate in the form of paranodal loops that are
linked to the axon membrane by specialized axo-glial junc-
tions. Beyond the paranodal regions are the juxtaparanodal
regions, which represent the edges of the compact myelin. The
length of the internode increases with increasing internodal
caliber and can exceed 1 mm for large axons, but the length of
the nodal gap is generally about 1 wm, regardless of internodal
caliber. Saltatory conduction arises because myelination de-
creases the membrane capacitance in the internode, allowing
the transient depolarization of one node to trigger the transient
depolarization of the next, thereby propagating the nerve im-
pulse in a discontinuous manner. This results in a rapid prop-
agation of action potentials at velocities of up to 100 m/s or
more.

While the relationship between the electrophysiological
function of myelinated axons and the spatial organization of
their ion channels is understood fairly well, these axons exhibit
additional anatomical features whose electrophysiological
functions are not well understood. One of the most striking
anatomical features of axons in the peripheral nervous system,
which has been known for more than a century (Cajal 1899;
Hess and Young 1952), is the narrowing of the axon at the
nodes and the paranodes. The extent of these constrictions is
minimal for axons below 2 wm in diameter but increases as
axons expand, reaching threefold for the largest axons, which
corresponds to a ninefold reduction in cross-sectional area
(Berthold 1968; Berthold and Rydmark 1983a, 1983b; Bertram
and Schroder 1993; Dun 1970; Rydmark 1981; Rydmark and
Berthold 1983; Swiird et al. 1995).

Given the known dependence of the cable properties of
axons on axonal cross-sectional area, it is interesting to ask
what effect the constriction of axons at nodes of Ranvier may
have on the propagation of the nerve impulse. This question
has been addressed by Halter and Clark (1993) using compu-
tational modeling. A key result of their study was that con-
striction of axons at nodes of Ranvier increases axonal con-
duction velocity, and that there is an optimal extent of
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constriction at which the conduction velocity is maximal (see
Fig. 3 in Halter and Clark 1993). Nodal radius was varied from
0.1 wm to about 6 wm, which corresponds to a 60-fold increase
in nodal membrane surface area (if assumed to be cylindrical).
However, the density of sodium channels was kept constant,
leading to a corresponding 60-fold increase in the number of
sodium channels. Moreover, the finding of an optimum extent
of nodal constriction was dependent on the width of the
periaxonal space between the axon and the myelin sheath and
occurred only if this space was large enough. Hence, from this
study, we do not know what the sole influence of nodal
morphology is on conduction velocity. To address this, we
have used computational modeling to investigate the influence
of nodal morphology on axonal conduction velocity assuming
a fixed number of sodium channels.

METHODS

We used a cable-equation-based representation of a myelinated
axon to study the dependence of conduction velocity on nodal,
paranodal and juxtaparanodal axonal morphology. Berthold and Ry-
dmark (1983a) compiled detailed information on the anatomy of
nodes of Ranvier and their surrounding paranodal elements in feline
spinal nerve root fibers. They divided the myelinated axon into four
distinct regions, termed NODE, MYSA (“myelin sheath attachment”),
FLUT (“fluted region”) and STIN (“stereotyped internode”). In mod-
ern terminology, the STIN corresponds to the internode where the
axon is tightly ensheathed by myelin. The FLUT corresponds to the
juxtaparanodal region where the voltage-gated potassium channels
are localized, and the MYSA corresponds to the paranodal regions,
where the myelin lamellae terminate in paranodal loops. Along the
paranode, the axon diameter drops sharply to about 30-50% of its
diameter in the internode (Berthold and Rydmark 1983a). The node of
Ranvier is a 1-um bare segment between the paranodes. The axon in
this region has a barrellike shape, bulging slightly in the center
relative to its proximal and distal ends (Rydmark and Berthold 1983).
While the axon’s juxtaparanodal regions were originally described to
have a tapering diameter, more recent studies using freeze-substitution
electron microscopy reveal a constant juxtaparanodal diameter, with
tapering occurring in the paranodal regions (Okamura and Tsukita
1986; Sosinsky et al. 2005). In this paper, we will refer to these
regions as INTER (internode), JUXTA (juxtaparanode), PARA (para-
node) and NODE (node itself) as shown in Fig. 1.

Previous studies of electrical phenomena in myelinated nerve fibers
have used geometric representations that explicitly defined sections of
the axon corresponding to the nodal, paranodal, juxtaparanodal and
internodal compartments (Halter and Clark 1993; Mclntyre et al.
2002; Okamura and Tsukita 1986; Sosinsky et al. 2005). The geom-
etry of the models in Halter and Clark (1993) and Nygren and Halter
(1999) is based on the anatomical data provided in Berthold and
Rydmark (1983a). Their models are multicable models, which con-
sider that current flows radially across the axon membrane and the
myelin, and longitudinally down the axon, the periaxonal space, and
the extracellular space. Mclntyre et al. (2002) used a similar double-
cable model but without the longitudinal current flow in the extracel-
lular space. Given the large resistance of the myelin, little transmem-
brane potassium current is conducted across the myelin. Conse-
quently, we replaced the double-cable model in Mclntyre et al. (2002)
(see their Fig. 1) by a single-cable model with the axon and myelin
capacitance in series (Fig. 1), and we accounted for the resistance of
the periaxonal space with a reduced potassium conductance per
channel.

The resulting single-cable model was implemented using the NEU-
RON software package, version 7.2 (Carnevale and Hines 2006;
Hines and Carnevale 1997). NEURON’s default implicit integration
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Fig. 1. The single-cable model. We simulated a generic axon fiber, consisting
of 30 repeating INTER-JUXTA-PARA-NODE-PARA-JUXTA-INTER sec-
tions. Nodes contained fixed numbers of sodium channels (5 X 103, 1.5 X 10%,
or 2.5 X 10%), which have fast Na™ membrane dynamics and a linear leak
conductance. JUXTA sections contained fast-gated potassium channels. While
all sections contained a membrane capacitance in parallel with their respective
conductance, nonnodal regions contained two capacitors in series, one repre-
senting the myelin capacitance C,,ciir, and the other representing the mem-
brane capacitance C,,,.,,. The figure is not to scale. INTER, internode; JUXTA,
juxtaparanode; PARA, paranode; and NODE, node itself.

method was applied with a time-step of 0.5 us. We designed an axon
model consisting of 30 identical axon sections. Each fiber section was
composed of a node (NODE), a paranodal region (PARA), a juxtan-
odal region (JUXTA), and a central internodal region (INTER). These
regions were organized in a sequential INTER-JUXTA-PARA-
NODE-PARA-JUXTA-INTER structure (Fig. 1). The length of
PARA was fixed at 4 wm, JUXTA at 75 wm and the NODE at 1 um.

To simulate the barrellike shape of the axon in the NODE region,
we used the experimental measurements of Rydmark and Berthold
(1983) in which the maximum height of the nodal outbulging & was
found to vary inversely with respect to nodal diameter D,. Merging
their data for nodes in dorsal and ventral nerve roots, we obtained the
least squares fit #/D,, = 0.162-exp(—0.395-D,,). In our simulations, we
used this formula to determine /4 for a given nodal diameter D,, and
then modeled the bulge by assigning the NODE region a uniform
diameter D, + 2h. A correlation between the bulging and the nodal
diameter was also found in Okamura and Tsukita (1986).

For the tapering of the myelin and the fiber/axonal diameters along
the PARA from JUXTA to NODE, we used three different geometries
(see Fig. 2A). The first geometry was a linear taper, in which the axon
diameter and fiber diameter decreased linearly. The second geometry
was a nonlinear taper in which the fiber diameter decreased slowly
initially and then more rapidly near the NODE, and the axonal
diameter decreased rapidly initially and then more slowly near the
NODE. In this case, the fiber diameter in the PARA region was
modeled as a sinusoid DEpR(x) = (Dgper — Drode) SINTX2LpAps) +
D, o4 Where x = 0 at the NODE, x = Lp,ra at the JUXTA-side of
PARA, and Lpsga = 4 pm. Dy, is the fiber diameter in the INTER,
D, 4. is the nodal diameter, and Ly i 1S PARA length. The corre-
sponding axon diameter was modeled as an exponential function
DSXAOEA('X) = mln exp[(X/LPARA) ]n(Daxon/Dmm)] where Dmm is the
smallest diameter of the axon next to the NODES (x =0), and D,
is the axon diameter in the INTER (x = Lp,x4)- The third geometry
was an abrupt steplike narrowing of the axon diameter at the JUXTA:
PARA interface. In each of the three different geometries, the myelin
thickness along the PARA was taken as the difference between the
corresponding fiber diameter and axon diameter, 2AFARA(x) =

PARA PARA myelin
Dﬁber ( ) D\xon ( )
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Fig. 2. Representation of the node and internode regions. A: the three tapering
designs of the axons and the myelin around the nodes of Ranvier used in this
study. B: the cylindrical capacitor model for the internode. The axon fiber
consists of the axon (the inner core) with diameter D,,,, the membrane with
thickness A,,....,, and a layer of myelin of thickness A,,,.;;, generating the outer
cylinder. The fiber diameter Dy, is then determined by Dg,., = D, + 2

axon
Amem + 2 Amyelin ~ Daxon + 2 Amyelin'

The internodal region’s capacitance was modeled as an equivalent
capacitance for two capacitors in series: one representing the intra-
cellular-to-membrane boundary, and the other representing the mem-
brane-to-myelin boundary (see Fig. 2B). Each region was treated as a
cylindrical conductor, whose capacitance per unit length was given by

C 2mepe,

—=— 1
L In(Dy/Dy,) @

where D, is the diameter of the outer cylinder, D, is the diameter of
the inner cylinder, g, is the permittivity of empty space, and &, is the
relative dielectric constant (Griffith 2013).

For the capacitor representing the plasma membrane of the axon,
the diameters of the outside and inside cylinders are much larger than

their difference, i.e., the membrane thickness A Expanding the

mem*

logarithm, i.e., In(Dy/D;,) = I[(Dyyon + 2 Anem)/Daxon] = 2
A en/Daxons vields then, for the capacitance per length,

—~ C D

Cmem = ‘Zem = amemSOwDaXDn (2)

mem

and for the specific capacitance of the membrane (capacitance per unit
area) Crem = Conerd (MDaxon) = Emem€o/Dmem» Which for a typical
value of €., gives the commonly used value 1 wF/cm?. We used this
value for the specific capacitance of the plasma membrane at the
NODE and INTER.

In the INTER, the additional capacitor in series with the membrane

capacitor has a capacitance per length given by

=~ Cmyelin 2 TEOEmyelin

L= = 3
Cmyehn L ln(Dfiber/Daxon) ( )

where Dy, .. is the diameter of the entire fiber (axon and myelin
sheath), D, is the diameter of the axon (we neglected the membrane
thickness), and &, ;,, is the relative dielectric constant of the myelin.
Reported values for the relative dielectric constant of the myelin range
from 5 to 15 (Basser and Roth 1991; Min et al. 2009). In this study we
choose ,,yciin = 10. The specific capacitance of the myelin, ¢
is then given by Cmyclin = Cmyclin/(WDﬁbcr)'

To determine the diameter of the fiber Dy, for a given axon
diameter, we generated a linear regression of the reported data
(Berthold et al. 1983), i.e.

myelin®

Dyon = 0.666 - Dy — 0.429 wm )

NODAL CONSTRICTIONS

which we used as a lookup table. The corresponding myelin capaci-
tance, émyelin’ then follows from Eg. 3.

For the computational modeling, we needed the capacitance per
length for our double capacitor model (see Fig. 2B). Combining Egs.
2 and 3, and dividing by the circumference of the fiber, the specific

equivalent capacitance is obtained as

. = Ceq _ Cmyelin _ Cmyelin (5)
eq - -
7T[)ﬁber 1+ ( Cmyelin )/( Cmem) 1+ Cmyelinl)fiber
L L CmemDaxon
where ¢, ciin and €y, are the specific myelin and membrane capac-

itances, respectively.
Replacing Dgpor/Doxon Using Eq. 3, we finally find

Cmyelin

Cog = : 6)
Cmyclin 8Osmyclin
exp

1+

Chode Dfibercmyelin

where we have assumed that the specific capacitance of the NODE
compartment ¢4 iS equal to the specific capacitance of the mem-
brane capacitor in the INTER. Given the fiber diameter, we used this
expression for the specific capacitance of the fiber.

We defined the number of sodium channels as Ny, and the number
of potassium channels as Ny. Then Ny, sodium ion channels with a
conductance of gy, = 20 pS each were placed in the NODE region,
and Ny potassium ion channels with a conductance of g = 20 pS
were placed in the JUXTA region (Rasband and Shrager 2000). The
conductance and voltage-dependent dynamics were modeled using the
Hodgkin-Huxley framework (Hodgkin and Huxley 1952). The sodium
and potassium currents are given by

Ina = NNagNanTHZ(V - VNa)v
Jx = NKSK”?(V - VK)

where V), and Vi denote the sodium and potassium reversal poten-
tials, V the membrane potential, and n,, n,, n, gating variables
satisfying the set of differential equations

)

dn;
i~ (W1~ 1) - BV ®

where (V) and B,(V) are defined as in Mclntyre et al. (2002).
6.57(V+ 20.4) —0.34(V+ 114)

o = , Oy = 5
V+204 V+ 114
1—expl ———— 1 —expl ——
10.3 11
~0.0426(V + 83.2)
s 1 V+ 832
P
9
8 —0.304(V + 25.7) 12.6 @
= _

a Vs P V+31.8\
1 —exp W 1+ exp —13—4

~ —0.0824(V + 66)

’ V+ 66
1 —exp

10.5
A leak current density of the form
j]eak = gleak(v - Vleak) (10)

was added to the nodal compartment, with leak conductance g, ., =
0.007 S/cm? (Mclntyre et al. 2002).
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RESULTS

We first examined the role of nodal diameter on conduction
velocity with the number of ion channels and all other param-
eters held constant. We used the above-mentioned single-
channel conductances and took the number of potassium chan-
nels in the JUXTA region to be 250, which is within the range
of numbers extracted from previous work (Mclntyre et al.
2002). The NODE specific capacitance was chosen to be 1
p,F/cmz. A current stimulus, between 1 nA and 5 nA, was then
applied in the first NODE region, triggering a healthy action
potential, and average conduction velocities were calculated by
measuring time for an action potential to pass from node 5 to
node 25. Conduction velocity as a function of nodal diameter
is shown in Fig. 3 for 5 X 10% (4), 1.5 X 10* (B), and 2.5 X
10* (C) nodal sodium ion channels, each for a range of fiber
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diameters (diameter of internodal axon plus myelin sheath)
with linear tapering of both the axon and myelin sheath in the
PARA. For a given fiber diameter, the conduction velocity
increases with increasing nodal diameter until it reaches a
maximum velocity and then decreases with increasing nodal
diameter. At a fixed nodal diameter, the conduction velocity is
invariably larger for larger fiber diameters. The dashed curves
in Fig. 3, A-C, denote the conduction velocities for uncon-
stricted axons, i.e., when the internodal and nodal diameters are
identical. The thick solid lines are the curves for the maximal
velocities, which vary linearly with respect to fiber diameter.
This indicates that the optimal nodal diameter increases with
increasing fiber diameter. For comparison, we show in Fig. 3D
the conduction velocity vs. nodal diameter for three different
fiber diameters, keeping the NODE sodium channel density
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Fig. 3. Analysis of velocity gain using a linear paranodal taper. The conduction velocity is plotted vs. nodal diameter for values of fiber diameter (internode plus
twice the myelin thickness) ranging from 4 wm to 20 um (indicated below each line) and 5 X 10* nodal sodium channels (4), 1.5 X 10* nodal sodium channels
(B), and 2.5 X 10* nodal sodium channels (C). The numbers below the curves indicate the fiber diameters. The dashed lines indicate velocities for unconstricted
axons, i.e., where the nodal and internodal axon diameters are identical. The thick solid lines indicate the maximum conduction velocity for each fiber diameter.
The insets in A—C indicate the percentage gain of conduction velocity compared with an unconstricted axon. In D, we show the conduction velocity as a function
of the nodal diameter for three values of the fiber diameter with a constant specific sodium conductance of gy, = 3.0 S/cm?, i.e., when the numbers of nodal
sodium channels increase linearly with the nodal diameter. The inser displays the linear tapering of the axon and myelin sheath in the PARA region.
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and JUXTA potassium channel density constant so as to yield
conductances of gy, = 3 S/cm” and g = 1.64 X 10~ * S/cm?,
respectively. The potassium channel conductance was based on
the value of g = 0.08 S/cm® used in McIntyre et al. (2002),
but adjusted to account for the fact that in our model the
potassium channels are distributed over a longer and fatter
JUXTA (i.e., at a lower density) compared with the NODE. In
agreement with the findings in Halter and Clark (1993) for a
vanishingly small periaxonal space, we found a monotonic
increase in conduction velocity and no optimal nodal constric-
tion.

The emergence of a maximal conduction velocity at an
optimal nodal diameter can be explained as follows. For
decreasing and vanishingly small nodal diameters, the conduc-
tion velocity will decrease to zero because of the increasing
intra-axonal resistance. Conversely, for increasing nodal diam-
eters, the total nodal capacitance will increase, resulting in a
slower action potential upstroke and hence a smaller conduc-
tion velocity. These two opposing trends result in the observed
peak for the conduction velocity. In support of this interpreta-
tion, we did not observe optimal nodal diameters if we kept the
nodal capacitance artificially constant as we increased the
nodal diameter (data not shown).

To better quantify the gain in conduction velocity due to
axonal constriction at nodes of Ranvier, we calculated the
increase in the conduction velocity for a fiber with an optimal
nodal constriction compared with an equivalent fiber with no
nodal constriction [i.e., when D, 4. = Dijperode (dashed lines
in Fig. 3, A—C)] and then plotted this increase vs. the fiber
diameter (see insets in Fig. 3, A—C). We found that larger fibers
exhibit a larger gain in conduction velocity than smaller fibers.
For fibers of 20 wm diameter, the gain was 60% in the case of
5 X 10 nodal sodium channels (see inset in Fig. 3A). Gener-
ally, the smaller the number of nodal sodium channels, the
larger the velocity gain.

From Fig. 3 we observe that a given conduction velocity can
be obtained generally with two different nodal diameters given
a specific value of the fiber diameter. This raises the question
of what cable morphologies are associated with a given target

NODAL CONSTRICTIONS

conduction velocity. To address this, we calculated the isocon-
duction velocity contour lines in the two-dimensional Cartesian
plane of internodal vs. nodal diameters. Such curves are shown
in Fig. 4 for target conduction velocities ranging from 10 m/s
to 75 m/s and 5 X 10° (A), 1.5 X 10* (B), and 2.5 X 10* (C)
nodal sodium channels. Starting with an unconstricted axon
(dashed lines), i.e., when the nodal diameter is equal to inter-
nodal diameter, a decrease in the nodal diameter also allows a
decrease in the internodal diameter, although by a smaller
amount, until a minimum is reached. The minima of the curves
in Fig. 4 represent the fiber morphologies that yield a given
target conduction velocity with the smallest internodal diame-
ter and hence with the smallest possible fiber diameter. With
further decreases in nodal diameter, the required internodal
diameter increases again. Thus nodal constrictions allow ax-
ons, with a constant number of ion channels, to reduce their
volume without any loss in electrical performance (specifically
conduction velocity). To quantify the space-savings, we plot in
the insets of Fig. 4 the percentage increase in the fiber volume
(axon plus myelin sheath), i.e., the spatial cost, that is neces-
sary for an unconstricted axon to achieve the same conduction
velocity as an axon with optimal nodal constrictions. The
largest benefit of nodal constriction (i.e., the highest spatial
cost for an unconstricted axon) is found for the smallest
number of nodal sodium channels (compare the insets in Fig. 4,
A-C).

The thick solid lines connecting the minima in Fig. 4
indicate optimal fiber morphologies in terms of space usage.
Since a minimal internodal diameter in Fig. 4 is the smallest
possible internodal diameter for the axons to conduct at a given
velocity, this conduction velocity must also be the maximum of
the graph in Fig. 3 if plotted for that minimal internodal
diameter. In more mathematical terms, if the conduction ve-
locity as a function of nodal diameter x and internodal diameter
y is denoted by v(x,y), the contour lines in Fig. 4 are charac-
terized by dv = (dv/0x)dx + (dv/dy)dy or equivalently y'(x) =
—(9v/ax)/(dv/dy). The maximum of the conduction velocity v
as a function of the nodal diameter x at a fixed internodal
diameter y occurs when dv/dx = 0, i.e., exactly at the same
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Fig. 4. Analysis of space cost using a linear paranodal taper. We show the contour lines of constant conduction velocity on the Cartesian plane of internodal axon
diameter vs. nodal diameter for a range of conduction velocities and 5 X 10 nodal sodium channels (A), 1.5 X 10* nodal sodium channels (B), or 2.5 X 10*
nodal sodium channels (C). The numbers below the lines indicate the target conduction velocities. The nodal and internodal diameters are identical on the dashed
line. The thick solid lines indicate fiber morphologies with the minimal internodal axon diameter for the given target conduction velocities. The insets indicate
the percentage increase in volume (i.e., spatial cost) for an unconstricted axon (internodal diameter = nodal diameter) compared with an axon with optimal nodal

constrictions.
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nodal diameter where the contour lines in Fig. 4 exhibit a axon and sheath in the PARA, and about 1.7 um (i.e., a
minimum. For example, from Fig. 4C we find for a target 5.3-fold constriction) with nonlinear tapering.
velocity of 55 m/s an optimal morphology with an internodal Finally, we considered the case of a step-taper, where the
diameter of 9 um and a nodal diameter of 1.5 um. The axon diameter decreases abruptly from the internodal diameter
corresponding fiber diameter can be obtained from Eq. 4 as  to the nodal diameter at the JUXTA:PARA interface and the
Dgper = 14.2 um. Consistent with this, we find in Fig. 3C that  myelin ends abruptly at the PARA:NODE interface (Fig. 6).
the maximum conduction velocity of a 14-um fiber is 55 m/s  The results are qualitatively similar to those for the other
for a nodal diameter of 1.5 um. In conclusion, the fiber tapers. The maximum velocities occur at larger nodal diame-
morphologies that maximize the conduction velocities also  ters, and the optimal fibers have a larger nodal diameter than
minimize the space cost. ) _ o for the linear and nonlinear tapers. For the same example as
The above s1mu1§1t10ns.were obtained assuming an idealized above (i.e., a 9 wm internodal axon diameter and 5 X 103
nodal morphology in which the axon and myelin sheath were ¢/ 4;\, ) channels), the optimal nodal axon diameter is about 2.5
assumed to taper linearly in the PAR'A. region as df:sgrlbefi in pum, i.e., a 3.6-fold constriction.
METHODS. To explore the effect of deviations from this idealized What is remarkable about these findings is the sensitivity of

f)r::;rgihn(ﬁﬁit}ilo?lrsl \Eilift:hozf) trﬁ)ri?llinlzzz‘riila C;?;trlfél(xlhsi’cr fhgeg:;eﬁ the conduction velocity to details of the nodal ultra-structure.
pering For a 20 wm fiber with 5 X 10> nodal sodium channels, a linear

diameter in the PARA region decreases according to an expo- ducti loci i of 60% d
nential function and the fiber diameter in the PARA decreases taPer promotes acon uction velocity gaimn o V70 compare
with an unconstricted axon, whereas for a nonlinear taper the

according to a sine function (see METHODS). Such tapering o . h
better resembles the micrographs in Sosinsky et al. (2005). In ~ £3in is ~35% (compare Figs. 3A and 5A). The corresponding
Fig. 5A, we show the conduction velocity vs. nodal diameter conduction velocities for the nonlinear taper are between 5 and
for a range of fiber sizes and a fixed number of 5 X 10* nodal 20% higher than for the linear taper, depending on the extent of
sodium channels. While the general behavior is the same as the nodal constriction.

reported in Fig. 3A, the conduction velocities are larger, and When the density of nodal sodium channels, instead of the
the increase in conduction velocity generated by the nodal number of nodal sodium channels, is held constant, we again
constriction is smaller. This is due to differences in the capac- find a monotonic increase in conduction velocity with increas-
itance of the myelin in the PARA region. In Fig. 5B we show ing nodal diameter (Fig. 5C). But here again the nodal mor-
contour lines of constant conduction velocity. As in Fig. 4, we  phology is an important influence on the conduction velocity.
find that there is one minimal internodal diameter for each For example, for a 20-um fiber with a nodal diameter of 12
target conduction velocity. The extent of constriction at the um, the conduction velocity is about 15% larger for a nonlin-
NODES is, however, smaller. For example, for an axon with an ear taper compared with a linear taper. Thus the precise
internodal diameter of 9 wm and a fixed number of 5 X 10°  morphology of the axon and myelin sheath in the PARA has a
nodal sodium channels, the optimal nodal diameter is about 1.4  significant effect on the conduction velocity of myelinated
pm (i.e., a 6.4-fold constriction) with linear tapering of the axons.
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Fig. 5. Analysis of velocity gain and space cost for a nonlinear paranodal taper. In A, the conduction velocity is plotted against the nodal diameters for values
of fiber diameter ranging from 4 um to 20 um (indicated below each line) and 5 X 10° nodal sodium channels. The dashed lines in A indicate velocities for
an unconstricted fiber, i.e., an axon with identical nodal and internodal diameters. The thick solid line indicates the velocities of fibers optimized for maximum
conduction velocities. The inset in A indicates the percentage gain in conduction velocity for a range of fiber diameters compared with a fiber with an
unconstricted axon. In B, we show contour lines of constant conduction velocity on the Cartesian plane of nodal diameter vs. internodal diameter for conduction
velocities ranging from 10 m/s to 40 m/s (indicated below each line) and 5 X 10* nodal sodium channels. The nodal and internodal axon diameters are identical
on the dashed line. The thick solid lines indicate fiber morphologies with the minimal internodal axon diameter for the given target conduction velocities. The
insets indicate the percentage increase in volume (i.e., spatial cost) for an unconstricted axon (internodal diameter = nodal diameter) compared with an axon
with optimal nodal constrictions. In C, we show the conduction velocity as a function of the nodal diameter for three values of the fiber diameter when the sodium
channel density is constant, i.e., when the numbers of nodal sodium channels increase linearly with the nodal diameter. The inset displays the nonlinear tapering
of the axon and myelin in the PARA region.
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Fig. 6. Analysis of velocity gain and space cost for a steplike taper. In A, the conduction velocity is plotted against the nodal diameters for values of fiber diameter
ranging from 4 um to 20 wm (indicated below each line) and 5 X 10° nodal sodium channels. The dashed lines in A indicate velocities for an unconstricted fiber,
i.e., an axon with identical nodal and internodal diameters. The thick solid line indicates the velocities of fibers optimized for maximum conduction velocities.
The inset in A indicates the percent gain in conduction velocity for a range of fiber diameters compared with a fiber with an unconstricted axon. In B, we show
contour lines of constant conduction velocity on the Cartesian plane of nodal diameter vs. internodal diameter for conduction velocities ranging from 10 m/s to
40 m/s (indicated below each line) and 5 X 10° nodal sodium channels. The nodal and internodal axon diameters are identical on the dashed line. The thick solid
line indicates fiber morphologies with the minimal internodal axon diameter for the given target conduction velocities. The inset indicates the percentage increase
in volume (i.e., spatial cost) for an unconstricted axon (internodal diameter = nodal diameter) compared with an axon with optimal nodal constrictions. In C,
we show the conduction velocity as a function of the nodal diameter for three values of the fiber diameter when the sodium channel density is constant, i.e., when
the numbers of nodal sodium channels increase linearly with the nodal diameter. The inset displays the steplike tapering of the axon and myelin in the PARA
region.

In light of these findings on the sensitivity of the conduction
velocity to the shape of the paranodal taper, we investigated if
there was also any significant effect of altering the length of
these regions. Generally speaking, the PARA region, where the
myelin terminates, is considered to be on the order of a few
micrometers, but in fact this varies (e.g., Okamura and Tsukita
1986). Thus we repeated our simulations with an extended
PARA region length of 8 wm, while still maintaining the same
NODE-NODE separation (i.e., INTER length) of 1 mm. The
behavior was qualitatively similar to that seen in Figs. 3—6, but
for a given fiber diameter, the corresponding optimal nodal

diameters were about 15-20% higher. In Fig. 7A, we show the
conduction velocity contours at three different conduction
velocities for fibers with our standard 4-um paranodal length
compared with fibers having an extended 8-um paranodal
length. The percent increase in the optimal nodal diameters is
higher for larger fibers.

Given the above findings for the axon and sheath mor-
phology in the PARA region, we also investigated the effect
of the slight axonal bulging that has been reported at nodes
of Ranvier (Rydmark and Berthold 1983). In Fig. 7B, we
compare the conduction velocity contour lines, now with
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Fig. 7. Analysis of the effects of an extended PARA length or a nodal bulge. We show the contour lines of constant conduction velocity on the Cartesian plane
of internodal diameter vs. nodal diameter for conduction velocities of 20 m/s, 30 m/s, and 50 m/s (indicated below each line) and 1.5 X 10* nodal sodium
channels. The nodal and internodal diameters are identical on the dotted line. The solid lines represent simulations in the presence of an extended PARA length
(A) or a nodal bulge (B), while the dashed lines indicate simulations in their absence.
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Fig. 8. Analysis of the effect of sodium channel number on the optimal fiber
morphology. We show the computed lines of optimal fiber morphologies for a
nonlinear tapering of the axon and myelin sheath in PARA (see inset Fig. 5C)
and 5 X 10? (dot-dashed line), 1.5 X 10* (dashed line), and 2.5 X 10* (solid
line) nodal sodium channels.

and without a nodal bulge, and find that nodal bulging has
an effect similar to that seen when extending the length of
the PARA regions, although smaller in magnitude.

In the above simulations, we held the number of sodium
channels at the NODES constant when we varied nodal and
internodal diameter, but in reality we fully expect that the
number will increase with increasing nodal surface area.
Therefore, we investigated how the optimal node designs
discussed above depend on the number of nodal sodium chan-
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nels. In Fig. 8, we show the lines of optimal design for 5 X 10°
sodium channels (dot-dashed line), 1.5 X 10* sodium channels
(long dashed line) and 2.5 X 10* sodium channels (solid line)
for a nonlinear-tapering arrangement. The similarity in the
slopes of these lines indicates that the optimal extent of nodal
constriction is not very sensitive to the number of sodium
channels. This suggests that an increase in nodal sodium
channel number with increasing axonal caliber would not be
expected to change the optimal morphological design of these
fibers significantly.

We then compared our optimal designs with “real” myelin-
ated fibers. We used the experimental data of Rydmark (1981)
for nodal and internodal diameters in axons of dorsal and
ventral cat spinal nerve roots, plotted in Fig. 9A. While there is
scatter in the data, in both cases the data can be fitted well with
a linear regression line. This shows that the linear relationship
between nodal and internodal diameter seen for the optimal
fiber morphologies in our simulations is also observed in real
axons.

We note that the slope of the lines relating nodal and
internodal diameter in Fig. 9A are different in dorsal nerve
roots (which are composed of sensory axons) and ventral nerve
roots (which are composed of motor axons). In view of the
insensitivity of the optimal fiber designs with respect to num-
bers of ion channels and the sensitivity of these designs to the
nodal and paranodal morphology, we investigated whether
these differences could be accounted for by differences in the
morphology of the paranodal regions. The results are shown in
Fig. 9B. The slope of the line representing the optimal fiber
design is largest for a linear taper (left-most solid/dashed
lines), and smallest for an abrupt steplike taper (right-most
solid/dashed lines), with the slopes for a nonlinear tapering
design somewhere in between (middle solid/dashed lines). As
shown above, for each tapering morphology the slope was
lower for 8-um-long PARA regions (solid lines) than for
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Fig. 9. Comparison of actual and predicted fiber morphologies. In A, we show morphological data for feline dorsal spinal nerve root (squares) and ventral spinal
nerve root (circles) extracted from Figs. 1 and 2 of Rydmark (1981). In B, we show the computed lines of optimal fiber morphologies for a linear tapering of
the axon and myelin sheath in the PARA region (left-most solid/dashed lines), for a nonlinear tapering (middle solid/dashed lines), and for an abrupt steplike
narrowing of the axon and myelin sheath at the JUXTA:PARA interface (right-most solid/dashed lines). The dashed lines represent fibers having a 4-um PARA
region length, and the solid lines represent fibers having an extended 8-um PARA region length. The arrows indicate the corresponding tapering method used.
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4-um-long PARA regions (dashed lines). Moreover, the range
of these slopes (about 2.6-fold) is more than the difference
between the dorsal and ventral nerve root axons (about 1.4-
fold). Thus the difference in the slope of the linear relation
between nodal and internodal diameter for dorsal and ventral
nerve roots could be explained by differences in local structure
of the axons and their myelin sheaths near the nodes of Ranvier
without changing the number of required nodal sodium chan-
nels.

While the above analysis indicates that the optimal fiber
morphology at nodal constrictions is relatively insensitive to
changes in the number of sodium channels, increasing the
number of sodium channels does increase the axonal conduc-
tion velocity. Thus we investigated how many additional nodal
sodium channels would be required to match the effect of nodal
constrictions. In Fig. 10B, we plot the internodal axon diameter
required to generate a conduction velocity of 25 m/s vs. nodal
sodium channel number for axons with no nodal constrictions
(“uniform cable”; top curve) and for axons with optimal nodal
constrictions (“constricted cable”; bottom curve). The horizon-
tal difference between the two curves represents the number of
additional channels needed for a given axon diameter (vertical
axis). For example, for an internodal diameter of 7 um, an
axon with no nodal constrictions would require 3,900 nodal
sodium channels in addition to the 5,000 channels for the
optimal cable, an increase of 76%. For smaller fibers, the
horizontal distance between the curves increases, indicating
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Fig. 10. Analysis of the number of additional nodal sodium channels required
to match the conduction velocity gains resulting from optimal nodal constric-
tions. A: the conduction velocity of a 20 um fiber (12.9 wm internodal
diameter) is plotted vs. the number of nodal sodium channels for an optimal
(constricted) cable and an unconstricted (uniform) cable. For a specified
conduction velocity (vertical axis), the horizontal distance between the two
curves represents the number of additional sodium channels needed for the
uniform cable. B: the necessary internodal diameter for a conduction speed of
25 m/s is shown as a function of the number of nodal sodium channels for the
optimal cable and the uniform cable. For a specified internodal diameter
(vertical axis), the horizontal distance between the curves represents the
number of additional sodium channels needed for the uniform cable to conduct
with the same speed of 25 m/s.
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that more additional channels are required to attain the same
conduction velocity. To address how the required number of
additional channels depends on the target conduction velocity,
we plot in Fig. 10A the conduction velocity vs. the number of
nodal sodium channels for an axon with an internodal diameter
of 12.9 um and optimal nodal constrictions (“‘constricted
cable”; top curve) or no nodal constrictions (“‘uniform cable”;
bottom curve). As above, the horizontal distance between the
curves depicts the numbers of additional channels required for
an axon with no nodal constrictions to generate the same
conduction velocity. For example, 6,000 additional channels
are needed for a conduction velocity of about 45 m/s, an
increase of 120%. At larger conduction velocities, the horizon-
tal distance between the curves increases, indicating that even
more sodium channels are required to attain the same conduc-
tion velocity. Thus, in addition to increasing the conduction
velocity for a given internodal axon diameter, nodal constric-
tions also reduce substantially the number of required sodium
channels for a target conduction speed.

DISCUSSION

The fact that myelinated axons in the peripheral nervous
system are constricted at nodes of Ranvier has been recognized
for more than a century (Cajal 1899; Hess and Young 1952),
but only a few studies have addressed its physiological signif-
icance. Dun (1970) appears to have been the first to speculate
that these constrictions may influence nerve conduction. Moore
et al. (1978) investigated this using computational modeling
and concluded that nodal conduction is insensitive to nodal
constriction, but Halter and Clark (1993) showed that, when
the detailed ultrastructure of nodes and their flanking regions is
taken into account, nodal constrictions are predicted to
increase axonal conduction velocity for a given fiber diam-
eter, and there is an optimal extent of constriction at which
the conduction velocity is maximal. However, as we noted
in the Introduction, the latter study did not reveal the sole
influence of nodal morphology on conduction velocity be-
cause the number of nodal sodium channels was varied
linearly with nodal diameter.

In the present study, we extended the analysis of Halter and
Clark by investigating the influence of nodal morphology on
conduction velocity for a fixed number of sodium channels per
node. We confirmed that for any given axon there is an optimal
extent of nodal constriction that minimizes the internodal
caliber required to achieve a give target velocity, and we found
that this is relatively insensitive to the number of sodium
channels. However, in contrast to Halter and Clark (1993),
these finding were independent of assumptions about the size
and the organization of the periaxonal space. For nodal diam-
eters larger or smaller than the optimal value, the conduction
velocity decreased. While linear cable theory (Koch 2004)
does not apply directly to heterogeneous cables, it suggests that
the cause of this decrease may be an increase in nodal capac-
itance because conduction velocity is inversely proportional to
membrane capacitance (for a recent review on axon physiol-
ogy, see Debanne et al. 2011). We verified this assertion
through computer simulations for a nodal capacitance held
artificially constant as we increased the nodal diameter (data
not shown).

To explore the benefit of nodal constrictions for axonal
physiology, we compared the conduction velocities of fibers
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with optimal nodal constrictions to the conduction velocities of
fibers with the same internodal diameter but with no nodal
constrictions. The difference between these two conduction
velocities represents the conduction velocity “gain” attribut-
able to the nodal constriction. We found that the gain in
conduction velocity increased with increasing fiber diameter
and could be very substantial. The magnitude of the gain in
conduction velocity depended on the number of nodal sodium
channels, i.e., for small numbers of sodium channels, we found
a larger gain in conduction velocity. Hence, nodal constrictions
have the greatest benefit for the largest axons with low num-
bers of nodal sodium channels.

The longest axons in the peripheral nervous system can
represent more than 99.9% of the neuronal cytoplasmic volume
(Cleveland 1996), and thus axons can represent a major met-
abolic drain on neuronal metabolism. While one effect of
axonal constriction at nodes of Ranvier is to increase the
axonal conduction velocity, our analyses highlight another and
perhaps even more important benefit, which is to minimize the
fiber volume. In this way, nodal constrictions reduce the
metabolic investment required to form and maintain their
processes. Our analyses indicate that this cost reduction is
realized in multiple ways, including a decrease in the volume
of axonal cytoplasm (due to a decrease in the internodal axon
caliber required to attain a given target conduction velocity), a
corresponding decrease in myelin sheath thickness (due to the
constant ratio between axon diameter and the myelin sheath
thickness; see Eq. 4), and a decrease in the number of nodal
sodium channels (due to the decrease in nodal volume).

Remarkably, the curves of all optimal fiber morphologies
corresponding to a fixed given number of sodium and potas-
sium channels showed a linear relationship within the accuracy
of our computations (see solid lines in Fig. 4, A—C, and Fig.
5B). Each point on these straight lines represents an optimal
fiber morphology, but for a different target conduction veloc-
ity. While the linearity held over a wide range of numbers of
nodal sodium channels (as far as tested), the slopes of the lines
changed only slightly (see Fig. 8). Such a linear relationship
between internodal and nodal diameter has also been shown in
experimental studies (Rydmark 1981), as shown in Fig. 9A. It
is not valid to compare our simulations directly with this
experimental data because we do not know that our model
faithfully describes the precise morphology and physiology in
those axons, but it is nonetheless noteworthy that the slopes are
comparable (compare Figs. 94 and 9B). In other words, the
extent of nodal constriction in real axons (~2- to 4-fold, based
on the slopes in Fig. 8A) is similar to the optimum constrictions
predicted by our model (~2- to 6-fold, depending on the
paranodal geometry). Thus, while we cannot say that the nodal
morphology in real axons is optimal, we can say that real axons
appear to follow the general design principles predicted by our
model.

We noted in the RESULTS that the slope of the linear relation-
ship between the internodal and nodal diameter in the data of
Rydmark and Berthold (Rydmark 1981) was different for
axons in dorsal roots compared with ventral roots. While such
differences in slope could in principle result from (large)
differences in the numbers of nodal sodium channels in these
axons, there could be other factors. We thus investigated
factors that influence the slopes of the lines of optimal fiber
morphology in our computational model. The optimal mor-
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phologies were sensitive to the choice of nodal capacitance
(data not shown), but this was determined by the specific
capacitance of the membrane only, which is not expected to
vary much. However, the optimal morphologies were also very
sensitive to the precise geometry of the axon and myelin taper
in the paranodal region, which could well vary considerably.
For example, while the relationship between the nodal and
internodal diameters of the optimal fiber designs was linear for
all tapering morphologies examined, the slopes were ~100—
130% greater for the linear tapers compared with the steplike
tapers, and ~50% greater for the nonlinear tapers (Fig. 9B).
This sensitivity results from the fact that the characteristic time
constant associated with the effective paranodal capacitance is
determined by the geometry of the entire paranodal structure,
and this influences the voltage experienced by the sodium
channels concentrated in the node. Thus it is possible that the
difference in the slope of internodal vs. nodal diameter be-
tween axons in dorsal and ventral roots noted above was due to
differences in the morphology of the axon and sheath flanking
the node. A detailed ultrastructural mapping of the morphology
and electrical parameters of nodes and paranodes in dorsal and
ventral nerve roots would be required to test this hypothesis.

To summarize, we conclude that the constriction of myelin-
ated axons at nodes of Ranvier is a biological adaptation to
minimize fiber caliber for a given target conduction velocity.
The fact that these constrictions can influence fiber caliber so
dramatically is quite remarkable in view of the short length of
the nodal and paranodal regions (a few wm) compared with the
long length of internodes, which can exceed 1,000 um for large
axons. The significance of reducing fiber caliber is that it
reduces the metabolic cost to the neuron for axonal growth and
maintenance, in addition to reducing overall body volume. The
metabolic cost is realized not just by a reduction in the number
of channels and pumps required to maintain the membrane
potential and excitability of the axon, but also by a reduction in
the myriad cellular processes that are required to support
axonal cytoplasm and their myelinating cells. Thus nodal
constrictions can have significant selective benefits for organ-
isms that myelinate their axons.
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