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Abstract

Neurofilaments are transported along axons in the slow component of axonal transport. The
average rate of movement is generally quoted as several millimeters or tenths of a millimeter
per day, but this rate is known to decrease while the neurofilaments are in transit due to spatial
and temporal factors that are not understood. We have previously presented a stochastic model
for neurofilament movement in vivo based on the transport kinetics of single neurofilaments
observed by time-lapse fluorescence imaging in cultured neurons. The model took into
account multiple velocity states and was only accessible through computational simulations.
In simulations of the movement of a pulse of radiolabeled neurofilaments, this model
generated a Gaussian wave which closely matched the experimental data. Here we present a
simpler model with only three velocity states which is more amenable to analytical
approaches. We show that the transport wave can be fully described by the mean and variance
and we present analytical solutions for these cumulants in terms of the kinetic parameters of
the model. We use the resulting expressions to examine the slowing of neurofilament transport
in the mouse sciatic nerve. We show that the slowing is accompanied by an increase in the
spread of the wave and that these changes are most readily explained by a change in the rate at
which neurofilaments reverse their direction of movement. This suggests that the directionality
of neurofilament transport in axons may be under spatial and/or temporal control and that
alterations in the directionality of neurofilament transport could provide a mechanism for
regulating the transport and distribution of these cytoskeletal polymers along axons.

1. Slow axonal transport

Many axonal macromolecules and organelles are
manufactured in the neuronal cell body and shipped out
along the axon by a process called axonal transport.
Membranous organelles move rapidly and continuously,
at average velocities of approximately 100–400 mm/day
(fast axonal transport), whereas cytoskeletal polymers and
cytosolic macromolecular complexes move much more
slowly, at average velocities of approximately 0.2–8 mm/day
(slow axonal transport) [1, 2]. Among the slowest of these
cargoes are the neurofilaments, which move at average
velocities of approximately 0.2–3 mm/day [3, 4]. Studies
on the axonal transport of neurofilaments in vivo using
radioisotopic pulse labeling have shown that the pulse of

radiolabeled neurofilament proteins forms a unimodal bell-
shaped wave that spreads as it moves distally. The average
velocity is generally quoted as the rate of movement of the
peak of the wave, but the spreading of the wave indicates that
the polymers move at a broad range of rates.

Neurofilament movement can be observed directly in
cultured nerve cells by transfection with fusion proteins
composed of a neurofilament protein linked to a fluorescent
protein. The fluorescent neurofilament fusion proteins
coassemble with endogenous neurofilament proteins to make
fluorescent neurofilaments, which can be observed by time-
lapse fluorescence microscopy [5]. Studies using this approach
have shown that (1) axonal neurofilament proteins move in the
form of assembled neurofilament polymers [6], (2) axonal
neurofilaments move rapidly, approaching the rate of fast
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Table 1. Summary of experimental data on neurofilament movement obtained in cultured neurons from neonatal rat and mouse superior
cervical ganglia. The velocities are time-weighted average interval velocities; they differ slightly from previously reported values, which
were weighted according to filament number. The rat data are from the published study of Wang and Brown [9]. The mouse data are from
the unpublished study of Uchida et al [38].

Rat superior cervical Mouse superior cervical
ganglion neuron ganglion neuron

Anterograde Retrograde Anterograde Retrograde

Average velocity 0.53 μm s−1 −0.6 μm s−1 0.51 μm s−1 −0.52 μm s−1

Number of filaments tracked 50 22 93 103
Direction of movement 69% 31% 47% 53%
Average frequency of movement 0.15 filaments min−1 0.22 filaments min−1

Average time pausing 67% 68%
Pause cutoff 0.0685 μm s−1 0.131 μm s−1

Time intervals 4 s or 5 s 4 s
Number of movies analyzed 76 61
Average movie duration 6.38 min 14.5 min
Total observation time 484.6 min 884.7 min

axonal transport, but their movements are also intermittent
and highly asynchronous [7–9], and (3) axonal neurofilaments
move in both directions, but reversals are infrequent [10].
Further studies using a fluorescence photoactivation pulse-
escape technique have shown that axonal neurofilaments
switch between two distinct kinetic states: a mobile state,
in which they alternate between bouts of rapid movement and
short pauses, and a stationary state, in which they pause for
prolonged periods with no movement [11]. We have termed
these states ‘on-track’ and ‘off-track’, respectively, and we
proposed that they may differ in the proximity or engagement
of the neurofilaments with the microtubule tracks along which
they move. In cultured rat superior cervical ganglion neurons,
the average pause duration was 29 s in the mobile state and
61 min in the stationary state.

The motile behavior of neurofilaments in cultured nerve
cells suggests that slow axonal transport is the result of rapid
bidirectional movements interrupted by prolonged pauses
[2, 12]. Whether the movement is considered slow or
fast depends on the timescale of observation. To test
this ‘stop-and-go’ hypothesis, we previously developed a
computational model of slow axonal transport based on our
time-lapse imaging data [13]. To characterize neurofilament
movement, we calculated the velocity for each time interval
and then binned these interval velocities into seven distinct
velocity states. We then calculated the frequency with which
neurofilaments transitioned between these seven states in
successive time intervals. The resulting frequencies were used
to generate a seven-by-seven matrix of transition probabilities
which we used to simulate the movement of neurofilaments
in silico. While this approach provided insight into the
transport process, it is problematic for two reasons. First, very
large numbers of neurofilaments must be tracked to obtain
statistical confidence in the transition probabilities, especially
for the higher velocity bins which are typically not heavily
populated. Second, the choice of the number and size of the
velocity bins is arbitrary. In this paper, we present a more
rational model based on only three velocity states (pausing,
moving anterograde and moving retrograde). The resulting
model is more compact than the previous model, enabling us

to derive explicit expressions for the velocity and spreading
of the transport wave. These expressions allow us to predict
neurofilament transport in vivo on a timescale of days and
weeks based on parameters derived from direct observations
in cultured neurons on a timescale of seconds and minutes.

One feature of neurofilament transport in vivo that has not
received much attention is that the transport rates frequently
slow along the length of the axon [14–17]. One study which
examined this phenomenon systematically concluded that it
is influenced by both spatial factors (i.e. distance along the
nerve) and temporal factors (i.e. time elapsed) [15]. There is
evidence that this slowing may be caused by neurofilament
phosphorylation [18–21], but this has not been proven. Here,
we use our modeling approach to investigate the mechanism
of slowing of neurofilament transport in mouse sciatic nerve.
We find that the decrease in velocity in the radioisotopic
pulse labeling experiments is accompanied by an increase
in the spreading of the transport wave. We show that these
changes are most likely due to changes in the frequency with
which neurofilaments reverse their direction of movement.
This suggests that the directionality of neurofilament transport
in axons may be under spatial and/or temporal control and
that alterations in the directionality of neurofilament transport
could provide a mechanism for regulating the transport and
distribution of these cytoskeletal polymers along axons.

2. Experimental measurements

To record neurofilament movement, cultured neurons were
transfected with GFP-tagged neurofilament protein and the
movement of fluorescent neurofilaments was tracked through
naturally occurring or photobleached gaps in the axonal
neurofilament array by time-lapse fluorescence microscopy
as previously described [5]. The data on rat superior cervical
ganglion neurons were obtained from our published work on
photobleached gaps [9] whereas the data on mouse superior
cervical ganglion neurons were obtained from our unpublished
work on naturally occurring gaps [38] (table 1). The time-
lapse intervals δt were 4 s or 5 s, and the position of the
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filament in each frame was defined as the position of its leading
end. A recording started when a neurofilament entered a gap
and it ended when it departed. The on- and off-track rate
constants, which dictate the long-term pausing behavior of the
neurofilaments, were obtained from our published work on
rat superior cervical ganglion neurons using the fluorescence
photoactivation pulse-escape strategy mentioned above [11].

3. Model development

In this section, we develop step by step a mathematical model
of neurofilament movement in axons based on our observations
of neurofilament movement in cultured neurons. Our model
differs significantly from the original model of Blum and Reed
[22], published 20 years ago, in that it builds directly on
our experimental measurements of the movement of single
neurofilaments. The basic assumptions of our model are as
follows: (1) neurofilaments move linearly along the long axis
of the axon, (2) the neurofilaments either pause, move in
the anterograde direction with velocity va or move in the
retrograde direction with velocity vr, (3) the behavior of
each neurofilament is independent of its neighbors, and (4)
all neurofilaments behave in a statistically identical manner.
In contrast to our previous approach [13], but similar to the
approach of Craciun et al [23], we define just three velocity
states: one anterograde velocity va, one retrograde velocity
vr and zero velocity (pausing). This simpler scheme is less
arbitrary and more tractable mathematically. The anterograde
and retrograde velocities, va and vr respectively, are defined
as the average anterograde and retrograde velocities excluding
pauses. To distinguish movements from pauses, we define
a velocity cutoff, vc, which represents the magnitude of
displacement that constitutes a movement; any movement that
is slower than this cutoff is considered to be a pause. As we
have described in previous studies, we set vc to be one camera
pixel per second, which corresponds to vc = 0.065 μm s−1

for the rat superior cervical ganglion neuron data and vc =
0.13 μm s−1 for the mouse superior cervical ganglion neuron
data (table 1).

3.1. Transition probabilities

We first consider a two-state model in which the neurofilaments
move unidirectionally and switch between a moving and a
pausing state (see figure 1). We define the probability that
a moving neurofilament transitions to the pausing state within
a time interval of δt as pδt (1|0), and thus the probability that a
moving neurofilament remains in the moving state is given by
pδt (1|1) = 1 − pδt (1|0). Similarly, we define the probability
that a pausing neurofilament transitions to the moving state as
pδt (0|1), and thus the probability that a pausing neurofilament
remains in the pausing state is given by pδt (0|0) = 1−pδt (0|1).
To obtain these transition probabilities from our time-lapse
movies, we calculate a velocity for each time interval for
every filament tracked, and then we use the velocity cutoff
vc, described above, to define these time intervals as either
movements or pauses. We then take the fraction of the total
number of time intervals corresponding to each transition

Figure 1. The kinetic scheme of neurofilament transport for a
simple two-state model in which the filaments can either move or
pause.

(pause to pause, move to move, move to pause and pause
to move) to be the probability associated with that transition.
Since our previous studies revealed no apparent difference
between the moving and pausing behavior of anterograde and
retrograde filaments [7, 9], at least within the axon proper, we
lump the anterograde and retrograde data together to generate
a single transition probability matrix. For the rat superior
cervical ganglion neuron data set, the resulting transition
probability matrix is given by

p =
(

pδt (0|0) pδt (0|1)

pδt (1|0) pδt (1|1)

)
=

(
0.85 0.15
0.33 0.67

)
, (1)

whereas for the mouse superior cervical ganglion neuron data
set, it is given by

p =
(

pδt (0|0) pδt (0|1)

pδt (1|0) pδt (1|1)

)
=

(
0.82 0.18
0.38 0.62

)
. (2)

From these transition probability matrices, we infer the
actual rate constants γij by using the underlying two-state rate
equations:

dp0

dt
= −γ01p0 + γ10p1

dp1

dt
= −γ10p1 + γ01p0,

(3)

where p0 and p1 denote the probabilities of a neurofilament
residing in the pausing or moving state, respectively. With
pδt (0|1) = p1(t) if p1(0) = 0, and pδt (1|0) = p0(t) if
p0(0) = 0, we find for the rates

γ01 = − 1

δt

pδt (0|1)

pδt (0|1) + pδt (1|0)
ln(1 − pδt (0|1) − pδt (1|0))

γ10 = − 1

δt

pδt (1|0)

pδt (0|1) + pδt (1|0)
ln(1 − pδt (0|1) − pδt (1|0)).

(4)

For the rat superior cervical ganglion neuron data set, we
find

γ01 = 0.041 s−1

(5)
γ10 = 0.093 s−1,

whereas for the mouse superior cervical ganglion neuron data
set, we find

γ01 = 0.064 s−1

(6)
γ10 = 0.14 s−1.
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Figure 2. (a)–(c) Three excerpts from the in silico movement of a neurofilament generated by a Markov process with the transition
probability matrix given in equation (1). (d)–(f ) Three examples of neurofilament movement through photobleached gaps in the axonal
neurofilament array of cultured rat superior cervical ganglion neurons from the published study of Wang and Brown [9].

3.2. Neurofilament movement

To characterize the movement generated by the transition
probability matrices calculated above, we run a stochastic
simulation of neurofilament movement in silico. In order
to mimic the experimental conditions, we track the filaments
within a 70 μm window. Initially, we place the neurofilament
50 μm to the left of the window and allow it to move. We
begin tracking its movement when it enters the window and
we continue to track it until it reaches the other end of the
window or until the time tracked exceeds 300 s. After the end
of the recording, a new neurofilament is launched 50 μm to
the left of the window and this process is repeated. Figure 2
shows movements generated using the transition probability
matrix p obtained from the rat superior cervical ganglion
neuron data set (equation (1)), compared to representative
anterograde movements from the same experimental data
set. The neurofilaments in the experimental data move
in asynchronous bursts of rapid intermittent movement, as
previously described. The in silico trajectories are coarser
because there is just a single velocity of movement, but
otherwise the overall behavior is similar.

To link the kinetics of single neurofilaments to spatial
distributions of large ensembles of neurofilaments, such as
encountered in experiments using radioisotopic pulse labeling
[17], we use the following equations of motion:

∂P0

∂t
= −γ01P0 + γ10P1

∂P1

∂t
= −v

∂P1

∂x
− γ10P1 + γ01P0,

(7)

where P1(x, t) and P0(x, t) are the probabilities of a
neurofilament residing in the moving or pausing state,
respectively, at time t in the interval [x : x +dx]. Alternatively,
P1(x, t) and P0(x, t) can also be considered to represent
the spatial distributions of an ensemble of independent
neurofilaments in the moving or pausing states, respectively,
at time t. Thus, since P(x, t) ≡ P1(x, t) + P0(x, t) describes
the spatial distribution of all neurofilaments (both moving and
pausing), the average velocity is defined by

v̄ = d

dt
〈x(t)〉 = d

dt

∫ ∞

−∞
xP (x, t) dx. (8)

4
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Taking the time derivative under the integral and using the
equations of motion in equation (7), one readily finds

v̄ = v

∫ ∞

−∞
P1(x, t → ∞) dx = v

1

1 + q1
, (9)

where q1 ≡ γ10

γ01
. Using the experimental data summarized in

table 1, and taking the average velocity to be the average of all
interval velocities excluding pauses (ignoring the direction of
movement), we find v = 0.55 μm s−1 and v = 0.52 μm s−1

for the rat and mouse superior cervical ganglion neurons,
respectively. Inserting these velocities into equation (9) along
with the transition rates γ01 and γ10 given by equations (5) and
(6), we find that v̄ = 0.17 μm s−1 and v̄ = 0.16 μm s−1

for the rat and mouse superior cervical ganglion neurons,
respectively. In comparison, the average velocities calculated
directly from our experimental data (again ignoring the
direction of movement, but this time including pauses) are
v̄ = 0.18 μm s−1 and 0.17 μm s−1, respectively. The fact
that these numbers are in close agreement supports the
assumption made above in the development of our model that
all neurofilaments behave in a statistically equivalent manner.
It also shows that our model describes correctly the kinetic
behavior of neurofilaments on fast timescales (i.e. tens of
seconds or several minutes).

The movement and spatial distribution of ensembles
of neurofilaments on slow timescales (days or weeks)
have been characterized in vivo using radioisotopic pulse-
labeling measurements. The initial pulse of radio-labeled
neurofilaments assumes a bell-shaped distribution that spreads
as it propagates along the axon in an anterograde direction.
In stochastic simulations of radioisotopic pulse-labeling
experiments, we showed previously that the bell-shaped wave
appears to be a Gaussian [13]. In appendix A, we show
that models of the type in equation (7) and more complex
ones introduced below do indeed generate spatial distributions
that approach Gaussians, and as such they can be fully
characterized by the mean value (〈x(t)〉) and the variance
(σ 2(t) ≡ 〈x2〉 − 〈x〉2), i.e.

P(x, t) = 1√
2πσ 2(t)

exp

(
(x − 〈x(t)〉)2

2σ 2(t)

)
, (10)

with mean value 〈x(t)〉 and variance σ 2(t) linear in time. For
the specific model in equation (7), we find

d

dt
σ 2(t) = d

dt

(∫ ∞

−∞
x2P(x, t) dx −

(∫ ∞

−∞
xP (x, t) dx

)2
)

= 2v2 γ10γ01

(γ01 + γ10)
3 . (11)

Using the transition probability matrices in equations (1) and
(2), we calculate d

dt
σ 2(t) = 1.0 μm2 s−1 = 0.087 mm2/

day for the rat superior ganglion neuron data set and d
dt

σ 2(t) =
0.56 μm2 s−1 = 0.048 mm2/day for the mouse superior
cervical ganglion neuron data set.

The above calculations, of course, yield faster velocities
and slower rates of spreading than observed for neurofilament
transport in vivo because the model thus far assumes no off-
track pauses and no retrograde movements. These additional
levels of complexity will be incorporated into the model in

Figure 3. The kinetic scheme of neurofilament transport for a
four-state model in which the filaments can move or pause in either
an anterograde or a retrograde state.

the following sections. Also note that the diffusive profile of
the pulse of neurofilaments, spreading with constant velocity,
does not require a diffusion term in the master equation (7).
The diffusive profile is generated by the random switching
between mobile and immobile states of the neurofilament
kinetics. Moreover, our experimental data indicate no
significant diffusion of neurofilament polymers in axons [11],
which is not surprising given their length and packing density
within the axonal cytoplasm.

3.3. Reversals

Up to now we have considered neurofilament movement to
be exclusively anterograde. To account for bidirectional
movement, we expand our model to include both anterograde
and retrograde movements. We consider that the direction
of movement is determined by the reversal rate constants γar

and γra which define the rate of reversal from anterograde to
retrograde and from retrograde to anterograde, respectively.
We consider that the reversals can only occur when a filament
is pausing [13], which is consistent with our observations of
reversals in cultured neurons and with models of vesicular
transport [24]. Hence, our expanded model now has four
states (see figure 3) and is mathematically described by

∂Pa(x, t)

∂t
= −va

∂Pa(x, t)

∂x
− γ10Pa(x, t) + γ01Pa0(x, t)

∂Pr(x, t)

∂t
= −vr

∂Pr(x, t)

∂x
− γ10Pr(x, t) + γ01Pr0(x, t)

∂Pa0(x, t)

∂t
=−(γ01 + γar)Pa0(x, t) + γ10Pa(x, t) + γraPr0(x, t)

∂Pr0(x, t)

∂t
= −(γ01 + γra)Pr0(x, t) + γ10Pr(x, t) + γarPa0(x, t),

(12)
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where Pa(x, t) and Pr(x, t) denote the distributions
of anterogradely and retrogradely moving neurofilaments
and Pa0(x, t) and Pr0(x, t) denote the distributions of
anterogradely and retrogradely pausing neurofilaments. As
shown above for the simpler two-state model, the spatial
distribution of all neurofilaments in this model regardless of
their kinetic state, i.e. P(x, t) = Pa(x, t)+Pr(x, t)+Pa0(x, t)+
Pr0(x, t), also approaches the Gaussian distribution shown in
equation (10) (see appendix A). In appendices B and C, we
show that the mean value 〈x(t)〉 and variance σ 2(t) of the
Gaussian distributions generated by this four-state model are
given by

d

dt
〈x(t)〉 ≡ v̄ = 1

(1 + q1)γrev
(γrava + γarvr)

= 1

(1 + q1)(1 + q3)
(q3va + vr) (13)

d

dt
σ 2(t) = 2q1

γ01 + γ10
v̄2

+ 2
1

q1 (γ01 + γ10)

γraγar

γ 2
rev

(
1 +

γ01

γrev

)
(va − vr)

2, (14)

with γrev ≡ γar + γra and q3 = γra/γar. Note that the average
velocity v̄ depends only on the ratios of the transition rates
q1 = γ10/γ01 and the ratios of the reversal rates q3 = γra/γar.

Experimental measurements are available for the
transition rates γ01 and γ10 (equation (4)), but this is
not the case for the reversal rates γra and γar because
reversals are rare [7, 9, 10]. However, we do have
information on the fraction of anterogradely and retrogradely
moving neurofilaments, fa and fr, and we can express
these fractions in terms of the reversal rate constants
as fa = γra/γrev and fr = γar/γrev. Thus, fa/fr =
γra/γar. For the rat and mouse superior cervical ganglion
neuron data sets summarized in table 1, fa/fr = γra/γar = 2.23
and 0.89, respectively. Assuming an overall reversal frequency
γrev = 1 × 10−4 s−1 [10], we obtain a rough estimate for the
reversal rates of γra ≈ 6.9×10−5 s−1 and γar ≈ 3.1×10−5 s−1

for the rat superior cervical ganglion neuron data set, whereas
for the mouse superior cervical ganglion neuron data set we
obtain γra ≈ 4.7 × 10−5 s−1 and γar ≈ 5.3 × 10−5 s−1.
However, it is important to emphasize that these are rough
estimates because the number of reversals observed in our
experimental studies is very small.

3.4. On-track and off-track states

To account for the existence of distinct prolonged pausing
states, we now expand our model to include distinct on-track
and off-track pausing states, both anterograde and retrograde.
Neurofilaments in the on-track state alternate between bouts
of rapid movement and short pauses, as described by the four-
state model above, whereas neurofilaments in the off-track
state pause for prolonged periods without movement [11]. A
kinetic scheme for this extended model is shown in figure 4.
According to this scheme, a neurofilament pausing on track
in the anterograde or retrograde states has four possible fates
within the time interval δt : (1) switch to the running state with

Figure 4. The kinetic scheme of neurofilament transport for a
six-state model in which the filaments can enter an additional
off-track pausing state in which they may pause for more extended
periods.

rate γ01, (2) switch off-track with rate γoff , (3) reverse direction
with rates γar or γra or (4) remain in the on-track pausing state
with probability p00. Once a neurofilament is in the off-track
state, it can switch back to the on-track state with rate γon.
To describe the behavior of an ensemble of neurofilaments
according to this model, we use the following set of equations:

∂Pa

∂t
= −va

∂Pa

∂x
− γ10Pa + γ01Pa0

∂Pr

∂t
= −vr

∂Pr

∂x
− γ10Pr + γ01Pr0

∂Pa0

∂t
= −(γ01 + γar)Pa0 + γ10Pa + γraPr0 + γonPap − γoffPa0

∂Pr0

∂t
= −(γ01 + γra)Pr0 + γ10Pr + γarPa0 + γonPrp − γoffPr0

∂Pap

∂t
= γoffPa0 − γonPap − γarPap + γraPrp

∂Prp

∂t
= γoffPr0 − γonPrp − γraPrp + γarPap, (15)

where Pap(x, t) and Prp(x, t) denote the distributions of off-
track neurofilaments in the anterograde and retrograde states,
respectively. As shown above for the simpler two-state and
four-state models, the spatial distribution of all neurofilaments
without regard to their kinetic state, i.e. P(x, t) = Pa(x, t) +
Pr(x, t) + Pa0(x, t) + Pr0(x, t) + Pap(x, t) + Prp(x, t), also
approaches the Gaussian distribution shown in equation (10)
(see appendix A). In appendices B and C, we show that
the mean value 〈x(t)〉 and variance σ 2(t) of the Gaussian
distributions generated by this six-state model are given

6
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by

v̄ = d

dt
〈x(t)〉 = 1

γrev

1

1 + q1(1 + q2)
(γrava + γarvr)

= 1

(1 + q1(1 + q2)) (1 + q3)
(q3va + vr) (16)

d

dt
σ 2(t) = 2v̄2q1

1 + q1(1 + q2)

(
q2

γon
+

(1 + q2)
2

γ01

)

+
2γarγra

γ 2
rev

1

γ10

1

1 + q1(1 + q2)

×
(

1 +
γ01

γrev

γon + γrev

γon + γoff + γrev

)
(va − vr)

2 , (17)

with q1 = γ10/γ01 and q2 = γoff/γon.
Note that in these expressions, the average velocity of

movement v̄ depends only on the ratios of the kinetic rates
q1 = γ10/γ01, q2 = γoff/γon and q3 = γra/γar in the following
manner.

(a) For increasing values of the ratios q1 = γ10/γ01 and
q2 = γoff/γon, the average rate of movement slows down.

(b) For increasing values of the ratio q3 = γra/γar, the average
rate approaches that which it would have if it only moved
anterograde without reversals.

(c) For decreasing values of the ratio q3 = γra/γar, the
average rate approaches that which it would have if
the neurofilaments moved only retrogradely without
reversals.

The rates γon and γoff have been determined
experimentally in cultured rat superior cervical ganglion
neurons using a fluorescence photoactivation pulse-escape
technique [11] and are γon = 2.75 × 10−4 s−1 and γoff =
4.45 × 10−3 s−1. Knowing γ10 and γ01 (equation (5)) and
the ratio fa/fr = γra/γar, we thus obtain an average velocity
of v̄ = 0.40 mm/day for the rat superior cervical ganglion
neuron data set.

In contrast to the average velocity, the spread of the
Gaussian wave, σ 2(t), depends on the kinetic rates individually
in the following manner:

(a) For decreasing reversal rates γar and/or γra, the rate
of spreading increases because when reversals are less
frequent, the duration of the bouts of anterograde and
retrograde movements between reversals increases.

(b) For a fixed rate γoff and decreasing rates γon, the rate of
spreading decreases because each neurofilament spends
more time off track and hence less time moving. For the
same reason, the average velocity is also slower. This fact
will be of significance for the data interpretation below
(see section 5).

(c) For a fixed rate γon and decreasing rates γoff , the rate
of spreading increases because the neurofilaments spend
more time on track and hence more time moving.
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Figure 5. Probability density distribution of pause durations
(symbols) extracted directly from our experimental data on
neurofilament movement in cultured neurons from mouse superior
cervical ganglia, compared with those predicted by the six-state
model. The predicted distribution (line) was obtained using the
expression γ01 exp(−γ01t), which is valid for short times (see text).
The transition rate γ01 for the mouse superior cervical ganglion
neuron data set is given by equation (6).

4. Pause-time distribution

An important characteristic of the stop-and-go movement
of neurofilaments is the frequency distribution of the pause
durations. For our six-state model, which includes distinct
on-track and off-track pausing states, we expect many brief
on-track pauses and fewer prolonged off-track pauses. This
results in a biphasic distribution of pause durations [13]. Due
to the short duration of our time-lapse movies, we are not able
to observe long pauses in our live-cell imaging observations
on neurofilaments moving through gaps. However, the pause
duration distribution obtained from these data should be
reproduced by our model for short durations (up to about a
minute) [13]. In appendix D, we derive the exact expression
for the distribution of pause durations based on the six-state
kinetic model described in the previous section, i.e.

ρ(t) =
(

γ01 + λ−
λ+ − λ−

)
λ+ exp (λ+t)

−
(

1 +
γ01 + λ−
λ+ − λ−

)
λ− exp (λ−t) , (18)

with

λ± = − 1
2 (γ01 + γon + γoff)

± 1
2

√
(γ01 + γon + γoff)2 − 4γ01γon. (19)

On short timescales the second term in equation (18)
predominates, giving rise to a distribution that is approximately
the simple exponential decay γ01 exp(−γ01t). In figure 5,
we use this approximation to compare the pause duration
distribution extracted directly from our experimental
observations on neurofilament movement in mouse superior
cervical ganglion neurons with our model (appendix D). There
is good agreement between the theoretical and experimental
curves, which both exhibit exponential decay. For longer
times, which are not available from the experimental data, the
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theory predicts a transition to a slower exponential decay with
time constant 1/λon (not shown in figure 5).

The average pause duration 〈T 〉 predicted by the model
can be obtained from equation (18), i.e.

〈T 〉 =
∫ ∞

0
tρ(t) dt = − 1

λ−
− γ01 + λ−

λ−λ+
. (20)

This expression yields average pause durations of 414 s and
269 s for the rat and mouse superior cervical ganglion neuron
data sets, respectively.

The pause duration distribution for off-track pauses
(excluding on-track pauses; see equation (D.15)), i.e.

ρoff(t) = γon e−γont , (21)

yields the following expression for the average off-track pause
duration:

〈Toff〉 =
∫ ∞

0
tρoff(t) dt = 1

γon
. (22)

The pause duration distribution for on-track pauses
(excluding off-track pauses; see equation (D.17)), i.e.

ρon = (γoff + γ01) exp(−(γoff + γ01)t), (23)

yields the following expression for the average on-track pause
duration:

〈Ton〉 =
∫ ∞

0
tρon(t) dt = 1

γoff + γ01
. (24)

The expressions in equations (22) and (24) yield an average
off-track pause duration of 〈Toff〉 = 60.5 min and an average
on-track pause duration of 〈Ton〉 = 21.8 s for the rat superior
cervical ganglion neuron data set. These on-track and off-
track average pause durations are broadly consistent with our
estimates of 〈Toff〉 = 61 min and 〈Ton〉 = 29 s in rat superior
cervical ganglion neurons using a discrete stochastic modeling
approach [11].

5. Slow axonal transport in the mouse sciatic nerve

In the previous sections, we derived expressions that relate the
movement of a population of neurofilaments in axons to the
moving and pausing behavior of the individual neurofilaments.
These expressions should allow us to extract information about
the fast timescale behavior of neurofilaments from pulse-
labeling kinetics obtained on slow timescales and to predict the
pulse-labeling kinetics based on the fast timescale behavior.
To test this, we now use our model to analyze the radioisotopic
pulse labeling data of Xu and Tung [17, 25] for neurofilament
protein L in adult mouse spinal motor neurons (figure 6).
These data were obtained by injecting radioactive amino acid
(35S-methionine) into the vicinity of motor neuron cell bodies
in the anterior horn of the mouse spinal cord at level L5.
This results in a pulse of radiolabeled proteins in motor axons
which enter the sciatic nerve via the L5 ventral nerve root.
As predicted by our model (see appendix A), the pulse of
radiolabeled proteins forms a Gaussian wave which decreases
in height and increases in width as it propagates along the
nerve.

To analyze the velocity and spreading of the Gaussian
transport waves in mouse spinal motor neurons, we determined

the mean and variance of the distributions at each time point
in figure 6 and plotted these values versus time. As noted by
Xu and Tung [17, 25], the best fit through the mean values is
given by two line segments, which intersect at about 3–4 weeks
(figure 7). The slope of the first line, which is the average
transport velocity for weeks 1–3, is 0.6 mm/day. This is
similar to the value of 0.56 mm/day determined in our prior
study using stochastic simulations [13]. In contrast, the slope
of the second line, which is the average velocity for weeks
4–6, is 0.12 mm/day. Thus there appears to be a five-fold
slowing of neurofilament transport along these nerves at about
3–4 weeks after injection, when the peak of the transport wave
is about 14 mm from the spinal cord.

Interestingly, however, our analysis also shows that the
decrease in the velocity of the Gaussian wave coincides
approximately with a 2.5-fold increase in the variance, from
1.3 mm2/day in weeks 1–3 to 3.3 mm2/day in weeks 4–6
(figure 7(b)). To explain these kinetic changes in terms of our
model, we use equations (16) and (17) derived above, which
express the velocity and the rate of spreading of the Gaussian
transport wave in terms of the rate constants in our model.
We use the transition rates γ01 = 6.4 × 10−2 s−1 and γ10 =
0.14 s−1, obtained by tracking neurofilaments in cultured
mouse superior cervical ganglion neurons (equation (6)), and
we use the on- and off-track rates γon = 2.8 × 10−4 s−1

and γoff = 4.5 × 10−3 s−1, obtained using the fluorescence
photoactivation pulse-escape method in cultured rat superior
cervical ganglion neurons [11]. As explained above, we do
not have a reliable estimate for the reversal rates in cultured
neurons because reversals are relatively rare. However, since
we know that the velocity v̄ depends on the ratio γra/γar, we
can solve equation (16) for weeks 1–3 to obtain γra/γar = 3.4.
Knowing this ratio and the rate of spreading in weeks 1–3 (see
above), we can solve equation (17) to obtain the individual
rates γra = 1.4 × 10−5 s−1 and γar = 4.2 × 10−6 s−1. These
values are within an order of magnitude of the rough estimates
that we made based on the few reversals that we have observed
experimentally (see above).

Next, we ask what changes in the kinetic parameters of
our model could explain the slower velocity and increased rate
of spreading of the transport wave in weeks 4–6. One way
to decrease the average velocity is to decrease the speed of
anterograde movement, va. However, this cannot explain the
experimental data because it leads to a simultaneous decrease
in the rate of spreading. Another way to decrease the average
velocity is to increase the speed of retrograde movement, vr.
Using equation (16) for the average velocity, we find that
we have to increase vr by about 300% to −1.45 μm s−1 in
order to match the observed slowing of the neurofilament
transport wave in the experimental data. This far exceeds
the average velocities observed for neurofilaments in cultured
neurons. Moreover, while this increase does also result in
a simultaneous increase in the rate of spreading, the extent
of this increase is 40% greater than observed experimentally.
Thus, it seems very unlikely that an increase in the speed of
retrograde movement can explain the experimental data.

In our model, there are two other ways to explain the
slower velocity and increased rate of spreading of the transport
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Figure 6. Transport of a pulse of radiolabeled neurofilaments along adult mouse spinal motor axons. Each graph depicts the distribution of
radioactive neurofilament protein L along the ventral root and sciatic nerve at one of six injection-sacrifice intervals, ranging from 1 to 6
weeks (a)–(f ), respectively. The x-axis represents distance measured within the measurement window, which extended 39 mm from the
point that the axons exit the spinal cord. The y-axis represents the probability density of the distribution. Each data point (symbols)
corresponds to the amount of radioactive neurofilament protein L in one 3 mm segment of nerve (average of 3–5 nerves). In the original
study of Xu and Tung [25] from which these data were obtained, the profiles were normalized to the total radioactivity within the
measurement window. However, this is problematic because the measurement window does not include the entire wave at every time point,
particularly at early times when the radiolabeled proteins are still entering the window. To deal with this, we fitted the data points at each
time point with a Gaussian curve (line), multiplied this Gaussian distribution by a factor that yields an integral under the curve of 1 and then
normalized the data points to the total area under this Gaussian including the portions that extended beyond the measurement window. Thus,
the experimental profiles represent neurofilament probability density distributions with a conserved normalization, permitting direct
comparison of the shape and height of the waves at different time points. This approach assumes that the neurofilaments are very long-lived
(i.e. there is negligible loss of protein due to degradation), which is supported by recent measurements of the half-life of neurofilaments
in vivo [26]. Data from [25].

wave in weeks 4–6. One is to increase the number of
retrogradely moving filaments by increasing γar or decreasing
γra, and the other is to decrease the proportion of the time that
the filaments spend on track by decreasing γon or increasing
γoff . An important observation guiding this process is that the
rate of movement is given by the difference of two velocity
terms in the numerator γrava, which is positive, and γarvr, which
is negative; see equation (16). Hence, the rate of movement can
be zero without a single term having to be zero, which suggests
that the velocity is more sensitive to changes in the reversal rate
constants than to changes in the other rate constants (q1 and
q2), which are confined to the denominator.

First, we examine alterations in the reversal rate
constants, which determine the directionality of neurofilament
movement. To adjust the rate of movement from 0.6 mm/ day
to 0.12 mm/day, we decrease the ratio γra/γar from 3.4 to
1.3. Knowing this ratio and the rate of spreading in weeks
4–6 (see above), we can solve equation (17) to obtain the
reversal rates. We find that the rate γar remains unchanged, i.e.
γar = 4.2 × 10−6 s−1 whereas γra decreases by about a factor
of 2.5 to γra = 5.4 × 10−6 s−1. This corresponds to a decrease
in the proportion of the time that the filaments spend moving
anterogradely, which is given by γra/(γar + γra), from 77% in
weeks 1–3 to 56% in weeks 3–4. These proportions are within
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Figure 7. Velocity and spreading of the Gaussian transport wave in
mouse spinal motor neurons as a function of time, based on the data
in figure 6. The y-axis in (a) shows the mean distance from the
spinal cord traveled by the pulse of radiolabeled neurofilaments.
The y-axis in (b) shows the variance of the Gaussian transport wave,
which is a measure of its width. The lines represent linear curve fits
for weeks 1–3 and 4–6.

the range (47–83% anterograde) that we have encountered in
our live-cell imaging studies on cultured neurons [7, 9, 10]
(see also table 1). Remarkably, both the slower velocity and
the increased rate of spreading of the transport wave can be
explained by the decrease of one single kinetic rate, the reversal
rate γra.

Finally, we examine alterations in the on- and off-track
rate constants, which determine the proportion of the time that
the filaments spend engaged with their microtubule tracks. Of
great importance here is that in order to slow down the rate
of movement, the prefactor in equations (16) and (17), which
is a function of γoff/γon, has to decrease. To adjust the rate
of movement from 0.6 mm/day to 0.12 mm/day we increase
the ratio γoff/γon from 16.2 to 87, which is a change of about
a factor of 5. We then solve equation (17) for the individual
rates γon and γoff as described above. To match the rate of
spreading in weeks 4–6, we find that the on- and off-track
rate constants have to be reduced by more than two orders of
magnitude to γon = 7.8 × 10−7 s−1 and γoff = 6.8 × 10−5 s−1

respectively. In other words, γon and γoff would have to
be reduced by more than a factor of 100 compared to our
experimental measurements in cultured neurons [11]. While it
is formally possible that the on- and off-track rates could differ
by this much in vivo, the greater sensitivity of the velocity and
spreading to the reversal rate constants discussed above makes

it more likely that changes in the reversal rates (i.e. the balance
of anterograde and retrograde movements) underlie the kinetic
transition at weeks 3–4 in these neurons.

6. Discussion and conclusions

We have previously described a stochastic model of
neurofilament transport in vivo based on direct measurements
of neurofilament movement in cultured neurons [13]. This
model assumed multiple velocity states and was only
accessible through computational simulations. In the present
study, we developed a simpler model with only three velocity
states that is more amenable to analytical approaches. Using
this model, we have shown rigorously that a pulse of
radiolabeled neurofilaments approaches a Gaussian waveform
as it moves out along the axon, similar to that observed
in the experimental data. Since a Gaussian wave can be
fully described by just two cumulants, the mean and the
standard deviation, this means that the same also applies to the
neurofilament transport waves obtained in radioisotopic pulse-
labeling experiments. To analyze the kinetics of neurofilament
transport, we derived explicit expressions for these cumulants
in terms of the rate constants in our model. The power
of these expressions is that they permit us to calculate the
velocity and rate of spreading of a population of radiolabeled
neurofilaments based on the transport kinetics of single
neurofilament polymers and conversely to extract the transport
kinetics of single neurofilament polymers from the velocity
and rate of spreading of the neurofilament transport waves.

To explore the utility of this analytical approach,
we investigated the possible causes of the slowing of
neurofilament transport along axons, which is a poorly
understood phenomenon. We selected the published
radioisotopic pulse-labeling data of Xu and Tung [17] for
neurofilament protein L in mouse spinal motor neurons. These
data reveal an abrupt slowing of neurofilament transport at
approximately 3–4 weeks after injection when the peak of
the neurofilament wave is about 14 mm from the spinal cord.
This differs from the more gradual slowing reported in rat
spinal motor neurons [14–16], but it is a good data set for
our modeling study because the standard errors of the data
are small and the kinetics are relatively clean. Approximately
coincident with the decrease in velocity, which was noted by
Xu and Tung [17], we also observed an increase in the rate
of spreading. Using our model, we found that the decrease
in the velocity and the increase in the rate of spreading can
both be explained by the decrease of a single kinetic rate,
the reversal rate γra, by a factor of about 2.5, while all other
kinetic rates remain constant. The effect of this change is
to decrease the frequency with which neurofilaments switch
from retrograde to anterograde movement, thereby increasing
the relative proportion of the time that neurofilaments spend
moving retrogradely. We were also able to reproduce the
observed changes in velocity and spreading by changing the
on- and off-track rates, but only if we changed them by two
orders of magnitude. Thus the velocity and spreading of
the neurofilament transport wave are particularly sensitive to
changes in the reversal rate constants, which determine the
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frequency of reversals and the balance of anterograde and
retrograde movements. Based on this finding, we propose
that changes in the reversal frequency are the most likely
explanation for the slowing of neurofilament transport in
mouse spinal motor neurons. At this point we have
made no attempt to predict whether such changes are due
to temporal factors (development or aging) or to spatial
factors (inhomogeneities along the axon), but this will be an
interesting topic for future investigation.

To understand how changes in a reversal rate constant
might regulate neurofilament transport in axons, it will
be necessary to understand the molecular mechanism of
neurofilament movement. Several lines of evidence indicate
that neurofilaments are transported along microtubule tracks
powered by microtubule motor proteins [27–32]. The
anterograde motor appears to be kinesin-1 and the retrograde
motor appears to be dynein. However, the mechanism by
which neurofilaments and other intracellular cargoes switch
from one direction of movement to the other is not known.
Three models are generally considered [33]. According to
the tug-of-war model, individual cargoes can simultaneously
bind both anterograde and retrograde motors, and the direction
of movement is determined by a competition between these
opposing motors. Alternatively, according to the exclusionary
presence model, individual cargoes can bind only motors of
a single directionality at one time. Finally, according to the
coordination model, each cargo is bound to both anterograde
and retrograde motors but the activity of these motors is
coordinated, either physically or mechanically, to determine
the direction of movement. Thus the slowing of neurofilament
transport analyzed in the present study could theoretically be
explained by an increase in the number, affinity and/or activity
of retrograde motors bound to the moving neurofilaments. It is
not known which of these possible mechanisms actually occur,
but studies on the bidirectional transport of vesicular cargoes
tend to favor a coordination model in which anterograde and
retrograde motors form a dual motor complex that is regulated
by a putative molecular switch [34, 35].

The best understood role of neurofilaments in axons is as
space-filling structures that maximize axonal caliber [36, 37].
This is important because the rate of propagation of action
potentials is directly proportional to the axonal cross-sectional
area. Thus, it is important to understand the mechanisms that
regulate the neurofilament content of axons. The intermittent
and bidirectional motile behavior of neurofilaments in axons
suggests that one important determinant may be the balance
of anterograde and retrograde movements and pauses. For
example, if neurofilaments pause more, or if those that move
spend more of their time moving retrogradely, their residence
time in the axon will increase and they will tend to accumulate,
resulting in an increase in axon caliber. In this way, the
transport properties of neurofilaments may directly influence
axonal morphology and physiology. Similarly, it is attractive
to speculate that perturbations in the directionality and/or
pausing behavior of neurofilaments may also give rise to the
abnormal and sometimes massive accumulations of axonal
neurofilaments that are observed in many neurodegenerative
diseases.

The problem of how neurofilaments are transported in
axons is particularly well suited to mathematical modeling
because it is not presently possible to analyze the movement
of single neurofilaments on both fast and slow timescales in
the same experimental system. Thus our model provides a tool
for reconciling the kinetic data obtained by direct observation
of single neurofilaments in cultured nerve cells, on a timescale
of seconds or minutes, with the kinetics data obtained for
populations of neurofilaments in vivo by radioisotopic pulse
labeling, on a timescale of days or weeks. Importantly, our
model is based on kinetic parameters that are measurable
experimentally. In this way, our model makes minimal
assumptions about the molecular mechanism and regulation
of neurofilament transport, which are still largely unknown.
Though such a modeling approach is phenomenological,
the present study demonstrates that it can provide insights
into the transport mechanism that cannot be obtained by
experimentation alone.
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Appendix A. The transport waves are Gaussian

Here we show that the spatial distribution of a pulse
of radio-labeled neurofilaments in our six-state model
(equation (15)) approaches a Gaussian distribution and is
hence fully characterized by the mean value and the variance.
The same arguments also apply to the two-state and four-state
models in equations (7) and (12), respectively.

We start by showing that all cumulants of the distribution
of neurofilaments P(x, t) are linear in time. To this end,
we introduce the Fourier transforms φa,r,a0,r0,ap,rp(k, t) of the
distributions Pa,r,a0,r0,ap,rp(x, t) and obtain their equations of
motion
∂φa(k, t)

∂t
= vakφa − γ10φa + γ01φa0

∂φr(k, t)

∂t
= vrkφr − γ10φr + γ01φr0

∂φa0(k, t)

∂t
= −(γ01 + γar)φa0 + γ10φa + γraφr0 + γonφap − γoffφa0

∂φr0(k, t)

∂t
= −(γ01 + γra)φr0 + γ10φr + γarφa0 + γonφrp − γoffφr0

∂φap(k, t)

∂t
= γoffφa0 − γonφap − γarφap + γraφrp

∂φrp(k, t)

∂t
= γoffφr0 − γonφrp − γraφrp + γarφap. (A.1)

The characteristic function φ(k, t) is associated with the
distribution of all neurofilaments P(x, t) = Pa(x, t) +
Pr(x, t) + Pa0(x, t) + Pr0(x, t) + Pap(x, t) + Prp(x, t), and thus
we can write

φ(k, t) ≡ φa(k, t) + φr(k, t) + φa0(k, t)

+ φr0(k, t) + φap(k, t) + φrp(k, t). (A.2)
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Assuming that all neurofilaments start at the same location, say
x = 0, the characteristic functions φi(k, t) assume the values
P̂i , i.e. the fraction of neurofilaments which are initially in
state ‘i’, at time t = 0. This leads to solutions of the form

φi(k, t) = P̂i exp(λ(k)t), (A.3)

and hence

φ(k, t) =
∑

i

P̂i︸ ︷︷ ︸
=1

exp(λ(k)t) ≡ exp(χ(k, t)). (A.4)

Inserting equation (A.4) into equations (A.1) yields a set of
equations for the function λ(k). The function χ(k, t) is
also known as the cumulant generating function since the
coefficients of the Taylor expansion of χ(k, t) in terms of
k are the cumulants Kn, i.e.

χ(k, t) =
∞∑

s=1

(−ik)s

s!
Ks(t). (A.5)

The cumulant generating function is a linear function in time,
and hence all the cumulants Ks are linear functions in time,
i.e. Ks(t) = Cst . It is possible to extract the mean value
K1(t) = 〈x(t)〉 ≡ v̄t and the variance K2(t) = 〈x2(t)〉 −
〈x(t)〉2 ≡ σ 2(t) from the set of linear equations obtained
after inserting the Taylor expansion in equation (A.5) into
equation (A.3), and then into equation (A.1), and comparing
coefficients of equal powers in k. However, a less cumbersome
method is presented in appendices B and C.

Given the cumulant generating function χ(k, t), we can
reconstruct the probability density using the inverse Fourier
transform, i.e.

P(x, t) = 1

2π

∫ ∞

−∞
exp(ikx) · exp(χ(k, t)) dk

= 1

2π

∫ ∞

−∞
exp

(
ikx − ikK1 − 1

2
k2K2

+
∞∑

s=3

(−ik)s

s!
Ks(t)

)
dk. (A.6)

We now perform two operations to further analyze this
expression. First, we perform a time-dependent shift x̃ ≡
x − v̄t which allows us to combine the first two terms in the
exponent of the integrand in equation (A.6) as ikx − ikK1 =
ikx̃. Second, we introduce the scaled variable k̃ = kt1/2,
leading to

P(x̃, t) = 1

2π
√

t

∫ ∞

−∞
exp

(
ik̃x̃√

t
− 1

2
Dk̃2

)

× exp

( ∞∑
s=3

(−ik̃)s

s!
Ks(t)t

−s/2

)
dk̃. (A.7)

Since the cumulants Ks(t) all increase linear in time, all terms
under the sum in equation (A.7) vanish for long times, and
what is left are the linear and quadratic terms in k̃ which can
be integrated to yield the Gaussian distribution

P(x, t) ≈ 1√
2πDt

exp

(−(x − v̄t)2

2Dt

)
, (A.8)

with

D = K2(t)

t
. (A.9)

Appendix B. Derivation of an expression for the
average velocities

Here we derive expressions for the average transport velocity
of neurofilaments based on the six-state, four-state and two-
state models. For the six-state model in equation (15), the
average velocity is defined as

〈x(t)〉 =
∫ ∞

−∞
x(Pa(x, t) + Pr(x, t) + Pa0(x, t)

+ Pr0(x, t) + Pap(x, t) + Par(x, t)) dx. (B.1)

Taking the derivative with respect to time, carrying it
under the integral and utilizing the equations of motion in
equation (15) result in

d

dt
〈x(t)〉 = −va

∫ ∞

−∞
x

∂Pa(x, t)

∂x
dx

− vr

∫ ∞

−∞
x

∂Pr(x, t)

∂x
dx, (B.2)

and after integration in parts

d

dt
〈x(t)〉 = vaP̂a(t) + vrP̂ (t)r, (B.3)

where

P̂a,r(t) =
∫ ∞

−∞
Pa,r(x, t) dx (B.4)

denotes the probability of finding a neurofilament anywhere
along the axon moving anterogradely or retrogradely.

Next, integration of all equations in equation (15) yields
a set of linear equations for the probability P̂i of finding a
neurofilament in each of the kinetic states ‘i’, i.e.
d

dt
P̂a = −γ10P̂a + γ01P̂a0

d

dt
P̂r = −γ10P̂r + γ01P̂r0

d

dt
P̂a0 = − (γ01 + γar + γoff) P̂a0 + γ10P̂a + γraP̂r0 + γonP̂ap

d

dt
P̂r0 = − (γ01 + γra + γoff) P̂r0 + γ10P̂r + γarP̂a0 + γonP̂ap

d

dt
P̂ap = γoffP̂a0 − (γar + γon) P̂ap + γraP̂rp

d

dt
P̂rp = γoffP̂r0 − (γra + γon) P̂rp + γarP̂ap. (B.5)

Steady-state solutions are easily obtained, leading to

P̂a = γra

γrev

1

1 + q1(1 + q2) (B.6)
P̂r = γar

γrev

1

1 + q1(1 + q2)
,

and hence

v̄ = 1

1 + q1(1 + q2)

1

γrev
(γrava + γarvr) . (B.7)

For the four-state model in equation (12), which lacks
off-track transitions (i.e. γon = ∞, γoff = 0), this expression
simplifies to

v̄ = 1

1 + q1

1

γrev
(γrava + γarvr) . (B.8)
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For the two-state model in equation (7), which lacks
reversals and off-track transitions (i.e. γoff = 0, γra = γar = 0
and va = vr ≡ v), we simplify further to obtain

v̄ = 1

1 + q1
v. (B.9)

Appendix C. Derivation of an expression for the
spreading

Here we derive expressions for the spreading of the
neurofilament transport wave based on the six-state, four-state
and two-state models. For the six-state model in equation (15),
we find the spread of the neurofilament distribution

σ 2(t) ≡ 〈x2(t)〉 − 〈x(t)〉2 (C.1)

by setting up the equation of motion for 〈x2(t)〉, i.e.

d

dt
〈x2(t)〉 = 2vaMa + 2vrMr, (C.2)

with

Ma,r,a0,r0,ap,rp(t) =
∫ ∞

−∞
xPa,r,a0,r0,ap,rp(x, t) dx. (C.3)

We then derive the closed set of equations

d

dt
Ma = vaP̂a − γ10Ma + γ01Ma0

d

dt
Mr = vrP̂r − γ10Mr + γ01Mr0

d

dt
Ma0 = − (γ01 + γar + γoff) Ma0 + γ10Ma + γraMr0 + γonMap

d

dt
Mr0 = − (γ01 + γra + γoff) Mr0 + γ10Mr + γarMa0 + γonMrp

d

dt
Map = γoffMa0 − (γar + γon) Map + γraMrp

d

dt
Mrp = γoffMr0 − (γra + γon) Mrp + γarMap. (C.4)

Next, we split this system of equations into the following set
of equations:

d

dt
s = v̄ − γ10s + γ01s0

d

dt
s0 = − (γ01 + γoff) s0 + γ10s + γraMr0 + γonsp (C.5)

d

dt
sp = γoffs0 − γonsp

for the symmetric variables

s = Ma + Mr

s0 = Ma0 + Mr0 (C.6)

sp = Map + Mrp,

and the following set of equations:

d

dt
d = v̄d − γ10d + γ01d0

d

dt
d0 = − (γ01 + γoff + γrev) d0 + γondp + γ10d + γ̄revs0 (C.7)

d

dt
dp = γoffd0 − (γon + γrev) dp + γ̄revsp

with ¯γrev = γra − γar for the asymmetric variables

d = Ma − Mr

d0 = Ma0 − Mr0

dp = Map − Mrp.

(C.8)

Focussing on long-term solutions (see appendix A) with
movement and spread linear in time, we make the ansatz

s(t) = α + βt

s0(t) = α0 + β0t

sp(t) = αp + βpt

d(t) = δ + εt

d0(t) = δ0 + ε0t

dp(t) = δp + εpt.

(C.9)

The resulting set of linear equations for the coefficients
α, β, δ and ε can be solved (but is cumbersome) to yield the
expressions

d

dt
〈x(t)〉 = v̄ = 1

γrev

1

1 + q1(1 + q2)
(γrava + γarvr) (C.10)

d

dt
σ 2(t) = 2v̄2q1

1 + q1(1 + q2)

(
q2

γon
+

(1 + q2)
2

γ01

)

+
2γarγra

γ 2
rev

1

γ10

1

1 + q1(1 + q2)

×
(

1 +
γ01

γrev

γon + γrev

γon + γof + γrev

)
(va − vr)

2 . (C.11)

For the four-state model in equation (12), which lacks
off-track transitions (i.e. γon = ∞, γoff = 0), this expression
simplifies to

d

dt
σ 2(t) = 2q1

γ01 + γ10
v̄2 + 2

1

q1 (γ01 + γ10)

× γraγar

γ 2
rev

(
1 +

γ01

γrev

)
(va − vr)

2, (C.12)

where v̄ is given by equation (B.7).
For the two-state model in equation (7), which lacks

reversals and off-track transitions (i.e. γoff = 0, γra = γar = 0
and va = vr ≡ v), we simplify further to obtain

d

dt
σ 2(t) = 2q1

γ01 + γ10
v̄2 = 2γ01γ10

(γ01 + γ10)3
v2. (C.13)

Appendix D. Derivation of an expression for the
pause duration distribution

Here we derive an expression for the pause duration
distributions for the six-state model in equation (15). First,
we lump the anterograde and retrograde moving states into a
single moving state given by

P1(t) ≡
∫ ∞

−∞
(Pa(x, t) + Pr(x, t)) dx. (D.1)
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Similarly, we lump the anterograde and retrograde pausing
states into single on-track and off-track pausing states given
by

P2(t) ≡
∫ ∞

−∞
(Pap(x, t) + Prp(x, t)) dx

(D.2)
P3(t) ≡

∫ ∞

−∞
(Pa0(x, t) + Pr0(x, t)) dx.

Thus, the equations of motion are obtained as

dP1(t)

dt
= −γ10P1 + γ01P2 (D.3)

dP2(t)

dt
= −γ01P2 + γ10P1 + γonP3 − γoffP2 (D.4)

dP3(t)

dt
= γoffP2 − γonP3. (D.5)

D.1 Pause duration distributions for all pauses

A pause begins when a neurofilament switches from a moving
state into an on-track pausing state and ends when it switches
back (figure 4). The time elapsed between the start and end
of the pause is the pause duration. Hence, the first term on the
right-hand side of equation (D.3) and the second term on the
right-hand side of equation (D.4) must be removed to describe
the pausing kinetics, i.e.

dP1(t)

dt
= γ01P2 (D.6)

dP2(t)

dt
= −γ01P2 + γonP3 − γoffP2 (D.7)

dP3(t)

dt
= γoffP2 − γonP3. (D.8)

Using the obvious conservation law P1 + P2 + P3 = 1, we
eliminate P3 and find the following closed set of equations for
P1 and P2:
dP2(t)

dt
= − (γ01 + γon + γoff) P2 + γonP1 + γon

(D.9)
dP1(t)

dt
= γ01P2.

The solution of this linear set of equations reads as

P1(t) = 1 + A exp(λ+t) + B exp(λ−t)) (D.10)

with

λ± = −1

2
(γ01 + γon + γoff) ± 1

2

√
(γ01 + γon + γoff)

2 − 4γ01γon

A = γ01 + λ−
λ+ − λ−

B = −(A + 1).

(D.11)

To get the pause duration distribution for a given state, we
must be sure to start in that state. Thus, we use the following
initial conditions:

P1(0) = 0

P2(0) = 1

P3(0) = 0,

(D.12)

stating that at the beginning of a pause the neurofilament is
in the on-track pausing state. The probability of finding a
neurofilament in any one of the pausing states is given by
P4(t) ≡ P2(t)+P3(t) = 1−P1(t) since P1 +P2 +P3 = 1. The
probability density of pausing times durations is thus obtained
as

ρ(t) ≡ − d

dt
P4(t) = d

dt
P1(t)

= Aλ+ exp(λ+t) + Bλ− exp(λ−t), (D.13)

which is an exact answer.

D.2 Pause duration distributions for off-track pauses

Off-track pauses start when a neurofilament switches from an
on-track pausing state to an off-track pausing state and end
when it switches back. Hence, in this case we have to remove
the fourth term on the right-hand side of equation (D.4) and the
first term on the right-hand side of equation (D.5), decoupling
P3 from the other equations, i.e.

dP3(t)

dt
= −γonP3(t). (D.14)

With the initial condition P3(0) = 1, i.e. the neurofilament is
initially in the off-track pausing state, the distribution of pause
times is obtained as

ρoff(t) = −dP3(t)

dt
= γon exp(−γont). (D.15)

D.3 Pause duration distributions for on-track pauses

On-track pauses start when a neurofilament switches to an on-
track pausing state from either a moving state or an off-track
pausing state and end when it switches back. Hence, in this
case we have to remove the second and third terms on the right-
hand side of equation (D.4) and the first term on the right-hand
side of equation (D.5), leading to

dP2(t)

dt
= − (γoff + γ01) P2(t). (D.16)

With the initial condition P2(0) = 1, i.e. the neurofilament is
starting the pause in the on-track pausing state, the distribution
of pause times is obtained as

ρon(t) = −dP2(t)

dt
= (γoff + γ01) exp(−(γoff + γ01)t). (D.17)
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