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1 Supporting Information A: calculation methods for the RDF and OPD in
Fig. 3

To calculate the RDF, for each time frame we used the centers of the neurofilaments in the domain [−0.2µm,
0.2µm] × [−0.2µm, 0.2µm] as reference points. We chose to use reference points in a smaller domain in
order to avoid boundary effects. For each reference point we binned the center-to-center distances (r)
between the reference neurofilament and all other neurofilaments with a bin size ∆r = 1nm, and normalized
by the factor 2πr∆rρN where ρN is the density of neurofilaments in the whole domain. We then took the
average over all reference points for each time frame and then over all time frames to obtain g(r). We
note that g(r) is noisy due to under sampling and the small bin size (1 nm). Averaging over more time
frames or using a larger bin size gave smoother g(r). To compute the OPD pn, we used circular windows
with fixed radii 60 nm as in [1]. For each time frame, we sampled centers of 10nN circles according to
the uniform distribution in the domain [−0.3µm, 0.3µm] × [−0.3µm, 0.3µm] and calculated the particle
occupancy number for each circle. We then produced a histogram of occupancy numbers obtained for all
circles and normalized it by the total number of circles to obtain pn.

2 Supporting Information B: parameter estimation

The parameters of the model are summarized in Table 1. In the following, we explain the methods used to
estimate the parameters.

Kinetic rates for neurofilament and organelle transports.

We assume that a neurofilament can only bind to a single microtubule at one time whereas an organelle,
which is much larger, can interact simultaneously with one or more microtubules. The capturing radius Rb

for these interactions is taken to be 80 nm, which is the length of a kinesin motor when fully extended, as
measured by electron microscopy [2].
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The movement of neurofilaments along axons has been modeled as a bidirectional independent velocity
jump process in 1D with two distinct pausing states in which a neurofilament either moves anterogradely or
retrogradely, pauses for a short time, or pauses for a long time [3, 4]. Since that model is one dimensional,
the kinetic rates extracted represent space averages over all neurofilaments in the axonal cross-section. For
this reason, the kinetic rates for neurofilament transport in our model are related, but not identical, to the
rates extracted in those other studies. We estimate kNon, the rate at which a neurofilament binds to a nearby
microtubule within distance Rb in our model, to be five times as large as the transition rate γ01, the rate
for a short-pause neurofilament to start moving, defined in [4]. We estimate kNoff , the unbinding rate of
neurofilaments in our model, to be the same as the rate γ10, the rate for a moving neurofilament to stop and
pause, as defined in [4]. Using γ01 = 2.0×10−3/s and γ10 = 6.5×10−2/s for myelinated axons, we obtain
kNon = 1.0× 10−2/s and kNoff = 6.5× 10−2/s.

The rate that a neurofilament leaves the domain, kNout, is estimated in the following way. The aver-
age time for a neurofilament to move through D is LN/s

N , where LN is the average length of moving
neurofilaments and sN is the speed of the filament. Assuming that the neurofilament departure events are
exponentially distributed then the rate kNout is the reciprocal of the average time, i.e., kNout = sN/LN . Taking
LN ≈ 5µm, which is the approximate average length of moving neurofilaments in cultured neurons, and
sN ≈ 0.5µm/s [5, 6], we obtain kNout = 0.1 s−1.

The binding and unbinding rates of organelles to a nearby microtubule, kOon and kOoff , are assumed to be
constant 2/s which are comparable to the rates used in previous mathematical models of vesicular transport
along microtubules [7, 8].

The passage rate for the organelles is calculated using their cross-sectional density. Assuming the cross-
sectional organelle density is ρO, then the total number of organelles in D is given by πR2

0ρ
O. Denoting the

speed of the organelle along microtubule to be sO and the length of the organelle to be 2a, then the time that
an organelle remains in D is given by 2a/sO. Assuming that organelle arrival is a Poisson process, then the
Poisson rate can be calculated as πR2

0ρ
O divided by 2a/sO, that is,

kOin = πR2
0ρ

OsO/(2a).

The sizes and densities of axonal organelles have been most carefully studied in [9]. According to Table
1 in [9], there are two major sizes of organelles: large ones such as mitochondria have an average cross-
sectional diameter of 280 nm, and small ones classified as tubular and vesicular profiles have an average
cross-sectional diameter of 50 nm. The densities of these organelles were counted in longitudinal slices of
axons, and need to be converted to cross-sectional densities for our model. We note that the cross-sectional
density (ρO) and the longitudinal density (denote as ρOl ) are generally different. However, the area fraction
occupied by the organelles averaged over cross sections and longitudinal sections are comparable, and this
relation can be used to convert the longitudinal density to cross-sectional density. Assuming that the objects
are cylinders with radius r and length l, the area fractions measured in cross and longitudinal sections are
given by πr2ρO and 2rlρOl respectively. Equating these two, we obtain ρO = 2lρOl /(πr). For the large
organelles, 2r = 280nm, l = 870nm, ρOl = 0.023/µm2, and this leads to ρO = 0.091/µm2. For the small
organelles, 2r = 50nm, l = 180nm, ρOl = 0.02/µm2, and this leads to ρO = 0.0917/µm2.

The density of organelles estimated above is comparable to the density data in published IDPN studies.
For example, in Table 1 of [10], the mitochondrial density was measured to be 0.187− 0.250/µm2. Taking
ρO = 0.187/µm2, a = 10b = 2.8µm, sO = 1µm/s, and R0 = 1µm, we obtain kOin = πR2

0ρ
OsO/(2a) =

0.105/s.
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Parameters in the pairwise repulsion and elastic spring forces.

We first estimate Lr which is the maximum distance for pairwise repulsions of particles. The parameter Lr

for neurofilament-neurofilament repulsion is approximately 2lN , where lN is the equilibrium brush thickness
of the neurofilament sidearms. This was given by Eqn. (4) in [1], that is,

lN =

(
12

π2

)1/3

Na
(a
s

)2/3
. (S1)

Here N is the number of amino acids per sidearm, a is the length of an amino acid and s is the spacing
between neurofilament sidearms. Taking N = 679 [1], a = 3.5 angstroms [11, 12], and s = 3 nm [1, 13],
we obtain lN ≈ 60.6 nm and thus Lr = 121.2 nm. For simplicity, we use the same Lr for pairwise
interactions of all kinds of particles and their interactions with the domain boundary.

We estimate the force prefactors εkl in the following way. We assume that the repulsion force between
two neurofilaments is approximately 1 pN when their surface distance is d = 40 nm. Under this assumption
we have εNN = 1/(Lr/d − 1). Taking Lr = 121.2 nm, we obtain εNN ≈ 0.5 pN. We denote εNN by
εr for simplicity of notation. We assume that the force prefactor for microtubule-microtubule, microtubule-
neurofilament repulsions and repulsions of microtubules and neurofilaments with the boundary are the same
as εr. For repulsions that involve organelles, we use a prefactor that is five times as large, that is, εkO =
εOk = 5εr.

Organelle movement can cause significant flow of the axoplasm near their surfaces and displace nearby
microtubules and neurofilaments. As an organelle pushes into D, its radius increases and it pushes nearby
fluid and particles away from itself; as it moves away from D, instead of leaving void behind it, it creates
negative pressure which draws the axoplasm to flow back and fill the space. In this model, we do not include
the hydrodynamic interactions among these particles explicitly, but include this effect by adjusting the force
factors ε associated with organelles. Specifically, when organelles push into the domain, we double εkO and
εOk to take into account the contribution of the fluid flow.

The effective spring constants κN and κO are calculated in the following way. The mean surface distance
between a microtubule and a cargo engaged on it has been observed to be 17 nm (denote as l0) [14, 15]. We
assume that the spring force and the repulsive force between a microtubule-neurofilament pair equilibrates
at l0, i.e., κN l0 = εr(Lr/l0 − 1). From this assumption we obtain

κN = εr(Lr/l0 − 1)/l0. (S2)

Plugging the values of εr, Lr and l0 into this expression, we obtain κN = 0.18 pN/nm. Similarly, we
assume that the spring force and the repulsive force of a microtubule-organelle pair equilibrates at l0, and
this leads to

κO = 5εr(Lr/l0 − 1)/l0, (S3)

which is κO = 0.9 pN/nm. We note that the spring constant for a single kinesin motor is estimated to be
0.2− 0.4 pN/nm in [16]. The spring constants here are different from the spring constant of a single motor
in two ways: first, when a cargo moves along a microtubule there could be multiple motors being active, and
thus the spring constants used here represent the sum of the spring constants over all active motors; second,
the spring constants used here only take into account projections of the elasticity of individual motors in
the plane orthogonal to the microtubule, whereas molecular motors are most likely slanted when dragging a
cargo along a microtubule.
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Drag and diffusion coefficients

We treat neurofilaments as slender cylinders, and estimate the drag coefficient per unit length (µ/L) by the
formula given in [17], µN/L = 4πη/(ln(LN/b) + ln 2 − 0.5), where η is the viscosity of the axoplasm,
LN is the characteristic length of the cylinder, and b is the characteristic radius of the cross-section. The
viscosity of the cell cytoplasm is estimated to be η ∼ 3− 5 pN · s/µm2 for mammalian cells [18, 19] . The
persistence length of neurofilaments is 200-450 nm [20,21]. The characteristic radius of a neurofilament with
its sidearms is about 20 nm [22]. Taking LN = 500nm , b = 20nm, we obtain µN/L = 4πη/(ln(LN/b) +
ln 2 − 0.5) ≈ 14.7 pN · s/µm2. Taking the length of the neurofilament to be L = 5µm, we obtain µN ≈
73.5 pN · s/µm.

We estimate the drag coefficient for microtubule in a similar way. The persistence length of micro-
tubules has been estimated to be 80 ± 20µm [23]. We estimate the characteristic radius of the micro-
tubule with its associated proteins in axons to be 37.5 nm. Taking η = 4 pN · s/µm2, LM = 80µm and
b = 37.5 nm, we obtain µM/L = 6.4 pN · s/µm2. We note that this estimate is close to the estimate ob-
tained by treating microtubules as infinitely long cylinders, for which one can use the Oseen drag formula
µM/L = 4πη/ log(4/Re − γ + 0.5) where γ ≈ 0.5772 is the Euler’s constant and Re is the Reynolds
number [24, 25]. The characteristic flow velocity in axonal cross-section is approximately U = 0.2µm/s
given by the pushing of the organelles. Assuming that the density of the cytoplasm ρ to be the same as water,
we find that Re = 2Ubρ/η ≈ 4.3× 10−3. Plugging η and Re into the Oseen’s formula, we obtain the drag
per unit length to be 6.3 pN · s/µm2. Taking the sectional length of microtubule to be L = 80µm, we obtain
µM ≈ 6.4× 80 = 512 pN · s/µm.

We estimate the drag coefficient for organelles using the formulas for a prolate ellipsoid given in [25].
Assume that the major axis of the ellipsoid is 2a and the minor axis is 2b, then the drag coefficient per unit
length is given by

µO/L =
16πηe3

2e+ (3e2 − 1) ln[(1 + e)/(1− e)]
for 0 < e < 1,

where e =
√

(1− (b/a)2) is the eccentricity. For b/a = 0.1, 0.2 and 0.5, we have µO/L ≈ 14.4, 17.9 and
26.0 pN · s/µm2. For organelles with b = 140nm and b/a = 0.1, we have µO ≈ 40.3pN · sec/µm.

We calculate the diffusion coefficients Dk with k = M,N, and O using the Einstein relation

Dk = kBT/µk, (S4)

where kB is the Boltzmann’s constant and T is the absolute temperature. At room temperature (25 ◦C or
298 K), one has kBT = 4.11pN · nm. Using µN = 73.5 pN s /µm, we obtain DN ≈ 5.6 × 10−5 µm2/s .
We calculated DM and DO in a similar way. Finally σk is given by the relation σk =

√
2Dk.

3 Supporting Information C: simulation algorithm

To solve the model numerically, we chose a time step h much smaller than all the time scales involved in
Mechanisms 1-3, treated the binding and unbinding, arrival and departure of cargoes explicitly at discrete
time steps, and integrated the model system (Eqn. 8 in main text) using the explicit Euler’s method. Because
σk, k = M,N,C are constant in time, the numerical integrator has strong order 1.0 [26]. For the segregation
simulations, we used h = 1/50 sec if there was no organelle in D; otherwise we used h = 1/1600 sec in
order to deal with the stiffness of the equations introduced by the pushing of organelles when they move
into D. The algorithm for a typical time step is summarized below.
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Algorithm for the model

1. Stochastic removal of moving neurofilaments. For each moving neurofilament, generate a random
number r uniformly distributed in [0, 1]. If r < 1− e−kNouth then remove it from D.

2. Update zOi and rOi for each organelle in D according to Eqn. 1 and Eqn. 4 in the main text. If zOi
becomes bigger than or equal to a then remove the i-th organelle and release all microtubules from it.

3. Stochastic unbinding of cargoes, i.e., neurofilaments and organelles, from their engaged microtubules.
If a microtubule and an organelle are engaged, then generate a random number r uniformly distributed
in [0 1], and let them unbind if r < 1 − e−k

O
offh. They also unbind if their surface distance is bigger

than Rb. The same method is used to update microtubule-neurofilament binding.

4. Stochastic binding of cargoes to microtubules.

(a) If the surface distance of a cargo and a microtubule is smaller than Rb, then generate a ran-
dom number and determine if they intend to bind to each other. Loop through all microtubule-
neurofilament and microtubule-organelle pairs, and find all potential binding events.

(b) Accept or reject the potential binding events according to the availability of the associated mi-
crotubules in a random order. We assume that one microtubule has 5 tracks, each neurofilament
occupies one track, an organelle with maximum radius 140nm occupies 2 tracks, and an or-
ganelle with maximum radius 70nm occupies 1.5 tracks.

5. Addition of new neurofilaments and organelles to D. The number of new neurofilaments equals the
number that has been removed in step 1. The number of new organelles is determined using the rate
kOin. Since the time step h is much smaller than the mean arrival time of organelles kOin, we introduce a
new organelle in each time step with probability (1−e−kOinh). We then add these cargoes at l0 = 17 nm
away from a randomly chosen microtubule at a random angle. If the random location overlaps with
an existing particle or the associated microtubule is too crowded, then a different microtubule and an
angle is generated randomly. Once a new cargo is added, it is bound to the selected microtubule.

6. Update the positions of the microtubules, organelles and neurofilaments inD by integrating the model
system (Eqn. 8 in the main text) using the explicit Euler’s method, i.e.,

xk
i (t+ h) = xk

i (t) + Fk
i (t)h/µk + σkr

k
i

√
h,

1 ≤ i ≤ nk, k = M,N,F.
(S5)

where rki are pairs of random numbers generated from the standard normal distribution using the
BoxMuller transform [27]. To avoid large values of rki , they are regenerated if the absolute value of
any component is greater than 5.

7. Go to Step 1 for the next time step.
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